Oral
Self-Repellent Random Walks on General Graphs - Achieving Minimal Sampling Variance via Nonlinear Markov Chains
Vishwaraj Doshi · Jie Hu · Do-Young Eun
Meeting Room 316 A-C
Abstract:
We consider random walks on discrete state spaces, such as general undirected graphs, where the random walkers are designed to approximate a target quantity over the network topology via sampling and neighborhood exploration in the form of Markov chain Monte Carlo (MCMC) procedures. Given any Markov chain corresponding to a target probability distribution, we design a *self-repellent random walk* (SRRW) which is less likely to transition to nodes that were highly visited in the past, and more likely to transition to seldom visited nodes. For a class of SRRWs parameterized by a positive real $\alpha$, we prove that the empirical distribution of the process converges almost surely to the the target (stationary) distribution of the underlying Markov chain kernel. We then provide a central limit theorem and derive the exact form of the arising asymptotic co-variance matrix, which allows us to show that the SRRW with a stronger repellence (larger $\alpha$) always achieves a smaller asymptotic covariance, in the sense of Loewner ordering of co-variance matrices. Especially for SRRW-driven MCMC algorithms, we show that the decrease in the asymptotic sampling variance is of the order $O(1/\alpha)$, eventually going down to zero. Finally, we provide numerical simulations complimentary to our theoretical results, also empirically testing a version of SRRW with $\alpha$ increasing in time to combine the benefits of smaller asymptotic variance due to large $\alpha$, with empirically observed faster mixing properties of SRRW with smaller $\alpha$.
Chat is not available.
Successful Page Load