Skip to yearly menu bar Skip to main content


Poster
in
Workshop: The Many Facets of Preference-Based Learning

Competing Bandits in Non-Stationary Matching Markets

Avishek Ghosh · Abishek Sankararaman · Kannan Ramchandran · Tara Javidi · Arya Mazumdar


Abstract:

Understanding complex dynamics of two-sided online matching markets, where the demand-side agents compete to match with the supply-side (arms), has recently received substantial interest. To that end, in this paper, we introduce the framework of decentralized two-sided matching market under non stationary (dynamic) environments. We adhere to the serial dictatorship setting, where the demand-side agents have unknown and different preferences over the supply-side (arms), but the arms have fixed and known preference over the agents. We propose and analyze an asynchronous and decentralized learning algorithm, namely Non-Stationary Competing Bandits (\texttt{NSCB}), where the agents play (restrictive) successive elimination type learning algorithms to learn their preference over the arms. The complexity in understanding such a system stems from the fact that the competing bandits choose their actions in an asynchronous fashion, and the lower ranked agents only get to learn from a set of arms, not \emph{dominated} by the higher ranked agents, which leads to \emph{forced exploration}. With carefully defined complexity parameters, we characterize this \emph{forced exploration} and obtain sub-linear (logarithmic) regret of \texttt{NSCB}. Furthermore, we validate our theoretical findings via experiments.

Chat is not available.