Skip to yearly menu bar Skip to main content


Afternoon Poster
in
Workshop: Artificial Intelligence & Human Computer Interaction

Neuro-Symbolic Models of Human Moral Judgment: LLMs as Automatic Feature Extractors

joseph kwon · Sydney Levine · Josh Tenenbaum


Abstract:

As AI systems gain prominence in society, concerns about their safety become crucial to address. There have been repeated calls to align powerful AI systems with human morality. However, attempts to do this have used black-box systems that cannot be interpreted or explained. In response, we introduce a methodology leveraging the natural language processing abilities of large language models (LLMs) and the interpretability of symbolic models to form competitive neuro-symbolic models for predicting human moral judgment. Our method involves using LLMs to extract morally-relevant features from a stimulus and then passing those features through a cognitive model that predicts human moral judgment. This approach achieves state-of-the-art performance on the MoralExceptQA benchmark, improving on the previous F1 score by 20 points and accuracy by 18 points, while also enhancing model interpretability by baring all key features in the model's computation. We propose future directions for harnessing LLMs to develop more capable and interpretable neuro-symbolic models, emphasizing the critical role of interpretability in facilitating the safe integration of AI systems into society.

Chat is not available.