Skip to yearly menu bar Skip to main content


Spotlight

Multi-Level Branched Regularization for Federated Learning

Jinkyu Kim · Geeho Kim · Bohyung Han

Room 310

Abstract:

A critical challenge of federated learning is data heterogeneity and imbalance across clients, which leads to inconsistency between local networks and unstable convergence of global models.To alleviate the limitations, we propose a novel architectural regularization technique that constructs multiple auxiliary branches in each local model by grafting local and global subnetworks at several different levels and that learns the representations of the main pathway in the local model congruent to the auxiliary hybrid pathways via online knowledge distillation.The proposed technique is effective to robustify the global model even in the non-iid setting and is applicable to various federated learning frameworks conveniently without incurring extra communication costs. We perform comprehensive empirical studies and demonstrate remarkable performance gains in terms of accuracy and efficiency compared to existing methods.The source code is available at our project page.

Chat is not available.