

Multi-Level Branched Regularization for Federated Learning

Jinkyu Kim*, Geeho Kim*, Bohyung Han (* equal contribution)

ICML 2022, Baltimore, USA

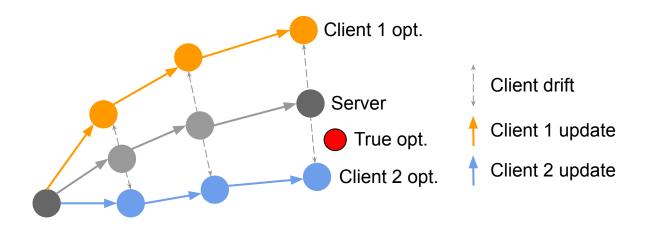
Federated Learning

- Unique distributed learning framework with decentralized data
 - Server learns a shared model through collaboration with a large number of remote clients
 - Achieve the basic level of privacy since the server does not observe training data directly
 - Each client runs a number of iterations to minimize communication costs with the central server
 - The server constructs a shared model via model averaging



Main Challenge: Data Heterogeneity

- Data distributions of individual clients are **different** from the global distribution
 - Multiple local updates on non-iid data distributions lead to client-drift
 - Individual client updates are prone to diverge and inconsistent
 - Overfit on local skewed data
- This challenge is exacerbated when the rate of client participation is low
 - Unstable client device operations and limited communication channels
 - Hampers the convergence to the optimal average loss over all clients



[Karimireddy20] S. P. Karimireddy, et al.: SCAFFOLD: stochastic controlled averaging for on-device federated learning. ICML 2020

Existing Frameworks

- Regularize local model updates to prevent a large deviation from the global model
 - Variance reduction techniques
 - Dynamic regularization based on local gradient
 - Ensure the similarity of the representations between the global model and local networks

Need additional communication cost per round

Extra memory requirements in clients to store local historical states

Existing Frameworks

- Knowledge distillation based methods
 - Use the global model as a teacher of the local model
 - Matches the representations at the logit level
- Utilize global knowledge on whole data distribution
- The parameters in the lower layers are less affected
- 🙁 Merely simulating the fixed output of the global model is sub-optimal

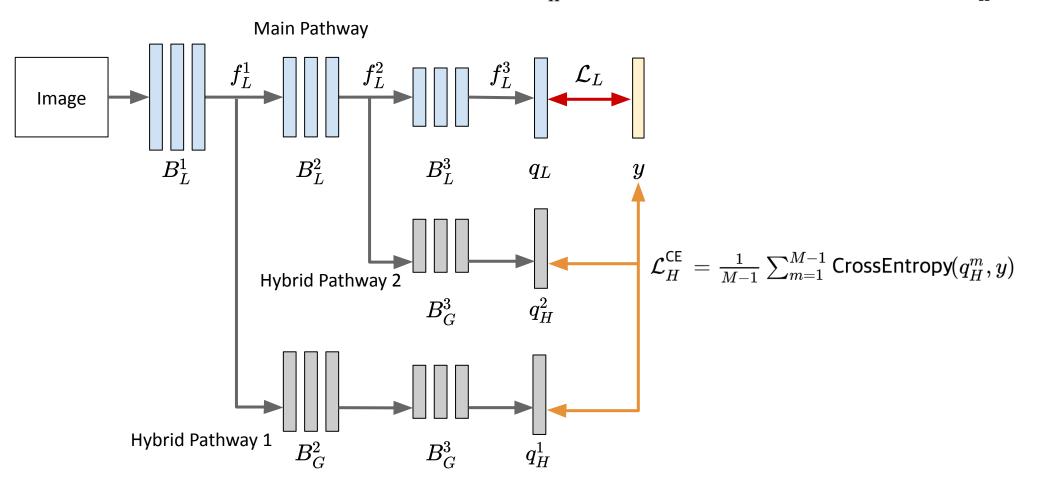
Existing Frameworks

- Knowledge distillation based methods
 - Use the global model as a teacher of the local model
 - Matches the representations at the logit level
- Utilize global knowledge on whole data distribution
- The parameters in the lower layers are less affected
- Merely simulating the fixed output of the global model is sub-optimal
- Layer-wise KD techniques
 - Minimize the L2-distance between activations of the local model and those of the global model
- All intermediate layers are affected
- Independent supervisions at multiple layers may lead to inconsistent and restrictive updates of model parameters
- Still merely simulating the fixed output of the global model

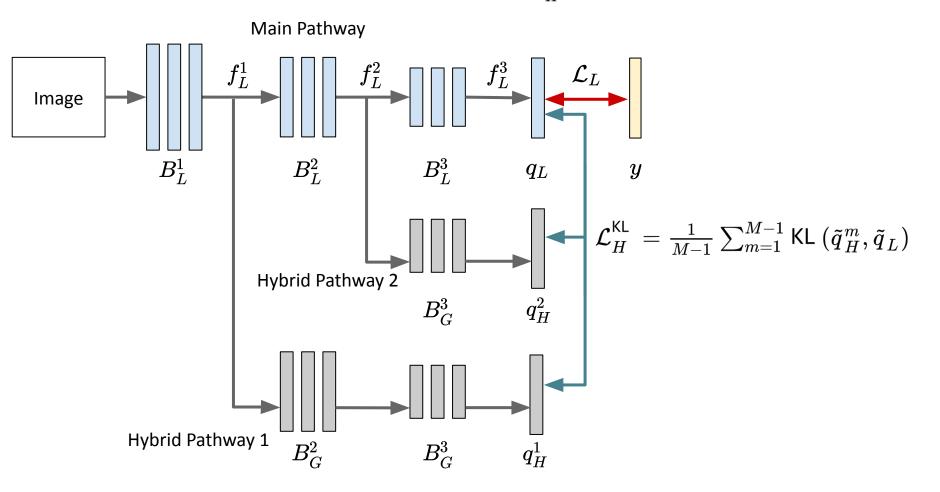
- Architectural regularization by multi-level hybrid branching
 - Augment a subnetwork in the global network $B_G^{m+1:M}$ to a local subnetwork $B_L^{1:m}$
 - Construct different **hybrid pathways** depending on branching locations



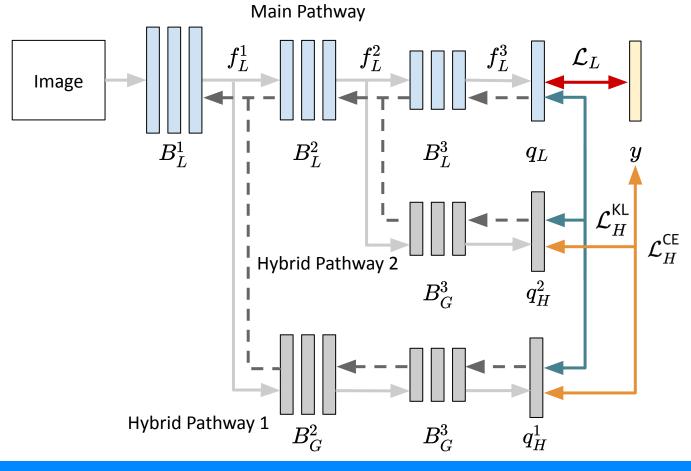
- Online knowledge distillation
 - Encourage the outputs of individual hybrid pathways to be **similar** to that of the main pathway
 - Use two different loss terms; the cross-entropy loss \mathcal{L}_{H}^{CE} and the knowledge distillation loss \mathcal{L}_{H}^{KL}



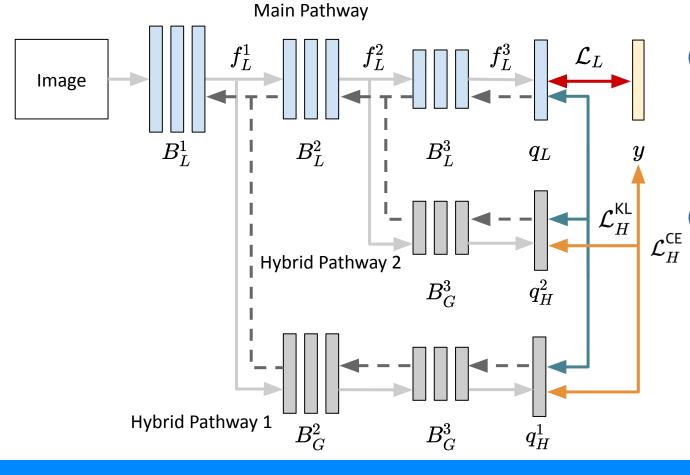
- Online knowledge distillation
 - Encourage the outputs of individual hybrid pathways to be **similar** to that of the main pathway
 - Use two different loss terms; the cross-entropy loss \mathcal{L}_{H}^{CE} and the knowledge distillation loss \mathcal{L}_{H}^{KL}



- Final loss function
 - $\bullet \quad \mathcal{L} = \mathcal{L}_L + \lambda_1 \cdot \mathcal{L}_H^{\mathsf{CE}} + \lambda_2 \cdot \mathcal{L}_H^{\mathsf{KL}}$
 - Update the model parameters of the local network in the main pathway while the blocks from the global network in the hybrid pathways remain unchanged



- Final loss function
 - $\bullet \quad \mathcal{L} = \mathcal{L}_L + \lambda_1 \cdot \mathcal{L}_H^{\mathsf{CE}} + \lambda_2 \cdot \mathcal{L}_H^{\mathsf{KL}}$
 - Update the model parameters of the local network in the main pathway while the blocks from the global network in the hybrid pathways remain unchanged



 Constrains the representation of the main pathway using on-the-fly features of the hybrid pathways

 Distributes the workload of the network across multiple
blocks for adapting the local data

• Learning procedure

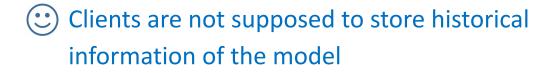
Algorithm 1 FedMLB **Input:** # of clients N, # of communication rounds T, # of local iterations K, initial server model θ^0 for each round $t = 1, \ldots, T$ do Sample a subset of clients $S_t \subseteq \{1, \ldots, N\}$. Server sends θ^{t-1} to each of all clients $i \in S_t$. for each $i \in S_t$, in parallel do $\theta_{i,0}^t \leftarrow \theta^{t-1}$ for k = 1, ..., K do for each (x, y) in a batch do $q_L(x;\tau) \leftarrow \operatorname{softmax}\left(\frac{f_L(x;\theta_{i,k-1}^t)}{\tau}\right)$ $q_H^m(x;\tau) \leftarrow \operatorname{softmax}\left(\frac{f_H^m(x;\theta_{i,m,k-1}^t)}{\tau}\right),$ $m=1,\ldots,M-1$ end for $\mathcal{L}(\theta_{i,k-1}^{t}) \leftarrow \mathcal{L}_{L} + \lambda_{1} \cdot \mathcal{L}_{H}^{\text{CE}} + \lambda_{2} \cdot \mathcal{L}_{H}^{\text{KL}}$ $\theta_{i,k}^t \leftarrow \theta_{i,k-1}^t - \eta \nabla \mathcal{L}$ end for Client sends $\theta_{i,K}^t$ back to the server end for In server: $\theta^t = \frac{1}{|S_t|} \sum_{i \in S_t} \theta^t_{i,K}$ end for

No requirement of additional communication overhead

• Learning procedure

Algorithm 1 FedMLB **Input:** # of clients N, # of communication rounds T, # of local iterations K, initial server model θ^0 for each round $t = 1, \ldots, T$ do Sample a subset of clients $S_t \subseteq \{1, \ldots, N\}$. Server sends θ^{t-1} to each of all clients $i \in S_t$. for each $i \in S_t$, in parallel do $\theta_{i,0}^t \leftarrow \theta^{t-1}$ for k = 1, ..., K do for each (x, y) in a batch do $q_L(x; \tau) \leftarrow \operatorname{softmax}\left(\frac{f_L(x; \theta_{i,k-1}^t)}{\tau}\right)$ $q_H^m(x;\tau) \leftarrow \operatorname{softmax}\left(\frac{f_H^m(x;\theta_{i,m,k-1}^t)}{\tau}\right),$ $m=1,\ldots,M-1$ end for $\mathcal{L}(\theta_{i,k-1}^{t}) \leftarrow \mathcal{L}_{L} + \lambda_{1} \cdot \mathcal{L}_{H}^{\text{CE}} + \lambda_{2} \cdot \mathcal{L}_{H}^{\text{KL}}$ $\theta_{i,k}^t \leftarrow \theta_{i,k-1}^t - \eta \nabla \mathcal{L}$ end for Client sends $\theta_{i,K}^t$ back to the server end for In server: $\theta^t = \frac{1}{|S_t|} \sum_{i \in S_t} \theta^t_{i,K}$ end for

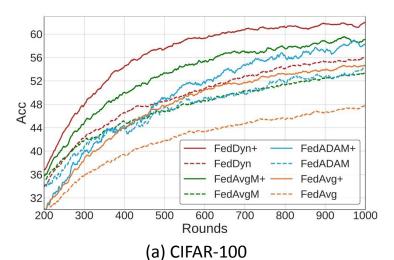
No requirement of additional communication overhead

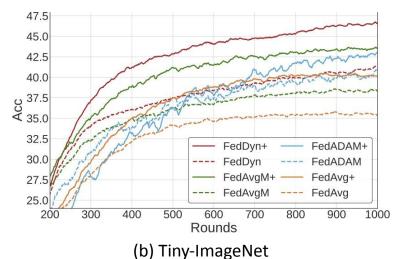


Experimental Results

- FedMLB with server-side optimization techniques
 - Moderate-scale with Dir(0.3): 100 clients, 5% participation

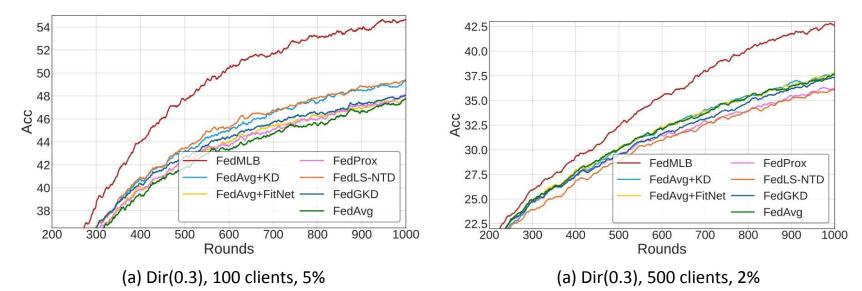
	CIFAR-100				Tiny-ImageNet				
Method	Accuracy (%, ↑		Roun	ds (#, ↓)	Accura	cy (%, ↑)	Rounds $(\#, \downarrow)$		
	500R	1000R	47%	53%	500R	1000R	38%	42%	
FedAvg (McMahan et al., 2017)	41.88	47.83	924	1000+	33.94	35.42	1000+	1000+	
FedMLB	47.39	54.58	488	783	37.20	40.16	539	1000+	
FedAvgM (Hsu et al., 2019)	46.98	53.24	515	936	36.10	38.36	794	1000+	
FedAvgM + FedMLB	53.02	58.97	349	499	40.93	43.52	380	642	
FedADAM (Reddi et al., 2021)	47.07	54.19	499	947	36.98	40.60	647	1000+	
FedADAM + FedMLB	48.59	58.23	472	645	35.81	42.90	552	873	
FedDyn (Acar et al., 2021)	48.38	55.78	425	735	37.35	41.17	573	1000+	
FedDyn + FedMLB	57.33	61.81	299	377	43.05	46.55	324	446	





• Comparison with other local objectives on CIFAR-100

	Dir(0.3), 100 clients, 5%				Dir(0.3), 500 clients , 2%			
Method	Accuracy $(\%, \uparrow)$		Rounds $(\#, \downarrow)$		Accuracy $(\%, \uparrow)$		Rounds $(\#, \downarrow)$	
	500R	1000R	40%	48%	500R	1000R	30%	36%
FedAvg (McMahan et al., 2017)	41.88	47.83	428	1000+	29.87	37.48	504	858
FedAvg + KD (Hinton et al., 2014)	42.99	49.17	389	842	29.83	37.65	505	859
FedAvg + FitNet (Romero et al., 2015)	42.04	47.67	419	1000+	29.92	37.63	503	860
FedProx (Li et al., 2020a)	42.03	47.93	⁻ 419 ⁻	1000+	29.28	36.16	533	966
FedLS-NTD (Lee et al., 2021)	43.22	49.29	386	825	28.66	35.99	546	1000+
FedGKD (Yao et al., 2021)	42.28	47.96	397	1000+	29.27	37.25	530	896
FedMLB (ours)	47.39	54.58	339	523	32.03	42.61	446	642



Conclusion

- A simple but effective **architectural regularization** technique to handle **heterogeneous** data distribution involved in federated learning
 - Online distillation between the main pathway and multiple hybrid pathways
 - Reduce the drift of the representations in the local models from the feature space of the global model
 - Two desired properties
 - No additional communication cost
 - No requirement to store the history of local states
 - Demonstrate remarkable performance gains in terms of accuracy and efficiency compared to existing methods.