Skip to yearly menu bar Skip to main content


Session

Optimization/Reinforcement Learning

Room 307

Moderator: Martin Takac

Abstract:
Chat is not available.

Thu 21 July 12:30 - 12:35 PDT

Spotlight
Learning to Cut by Looking Ahead: Cutting Plane Selection via Imitation Learning

Max Paulus · Giulia Zarpellon · Andreas Krause · Laurent Charlin · Chris Maddison

Cutting planes are essential for solving mixed-integer linear problems (MILPs), because they facilitate bound improvements on the optimal solution value. For selecting cuts, modern solvers rely on manually designed heuristics that are tuned to gauge the potential effectiveness of cuts. We show that a greedy selection rule explicitly looking ahead to select cuts that yield the best bound improvement delivers strong decisions for cut selection -- but is too expensive to be deployed in practice. In response, we propose a new neural architecture (NeuralCut) for imitation learning on the lookahead expert. Our model outperforms standard baselines for cut selection on several synthetic MILP benchmarks. Experiments on a realistic B&C solver further validate our approach, and exhibit the potential of learning methods in this setting.

Thu 21 July 12:35 - 12:40 PDT

Spotlight
A Regret Minimization Approach to Multi-Agent Control

Udaya Ghai · Udari Madhuhshani · Naomi Leonard · Elad Hazan

We study the problem of multi-agent control of a dynamical system with known dynamics and adversarial disturbances. Our study focuses on optimal control without centralized precomputed policies, but rather with adaptive control policies for the different agents that are only equipped with a stabilizing controller. We give a reduction from any (standard) regret minimizing control method to a distributed algorithm. The reduction guarantees that the resulting distributed algorithm has low regret relative to the optimal precomputed joint policy. Our methodology involves generalizing online convex optimization to a multi-agent setting and applying recent tools from nonstochastic control derived for a single agent. We empirically evaluate our method on a model of an overactuated aircraft. We show that the distributed method is robust to failure and to adversarial perturbations in the dynamics.

Thu 21 July 12:40 - 12:45 PDT

Spotlight
Multi-slots Online Matching with High Entropy

XINGYU LU · Qintong Wu · WENLIANG ZHONG

Online matching with diversity and fairness pursuit, a common building block in the recommendation and advertising, can be modeled as constrained convex programming with high entropy. While most existing approaches are based on the ``single slot'' assumption (i.e., assigning one item per iteration), they cannot be directly applied to cases with multiple slots, e.g., stock-aware top-N recommendation and advertising at multiple places. Particularly, the gradient computation and resource allocation are both challenging under this setting due to the absence of a closed-form solution. To overcome these obstacles, we develop a novel algorithm named Online subGradient descent for Multi-slots Allocation (OG-MA). It uses an efficient pooling algorithm to compute closed-form of the gradient then performs a roulette swapping for allocation, yielding a sub-linear regret with linear cost per iteration. Extensive experiments on synthetic and industrial data sets demonstrate that OG-MA is a fast and promising method for multi-slots online matching.

Thu 21 July 12:45 - 12:50 PDT

Spotlight
Decision-Focused Learning: Through the Lens of Learning to Rank

Jayanta Mandi · Víctor Bucarey · Maxime Mulamba Ke Tchomba · Tias Guns

In the last years decision-focused learning framework, also known as predict-and-optimize, have received increasing attention. In this setting, the predictions of a machine learning model are used as estimated cost coefficients in the objective function of a discrete combinatorial optimization problem for decision making. Decision-focused learning proposes to train the ML models, often neural network models, by directly optimizing the quality of decisions made by the optimization solvers. Based on a recent work that proposed a noise contrastive estimation loss over a subset of the solution space, we observe that decision-focusedlearning can more generally be seen as a learning-to-rank problem, where the goal is to learn an objective function that ranks the feasible points correctly. This observation is independent of the optimization method used and of the form of the objective function. We develop pointwise, pairwise and listwise ranking loss functions, which can be differentiated in closed form given a subset of solutions. We empirically investigate the quality of our generic methods compared to existing decision-focused learning approaches with competitive results. Furthermore, controlling the subset of solutions allows controlling the runtime considerably, with limited effect on regret.

Thu 21 July 12:50 - 12:55 PDT

Spotlight
On the Hidden Biases of Policy Mirror Ascent in Continuous Action Spaces

Amrit Singh Bedi · Souradip Chakraborty · Anjaly Parayil · Brian Sadler · Pratap Tokekar · Alec Koppel

We focus on parameterized policy search for reinforcement learning over continuous action spaces. Typically, one assumes the score function associated with a policy is bounded, which {fails to hold even for Gaussian policies. } To properly address this issue, one must introduce an exploration tolerance parameter to quantify the region in which it is bounded. Doing so incurs a persistent bias that appears in the attenuation rate of the expected policy gradient norm, which is inversely proportional to the radius of the action space. To mitigate this hidden bias, heavy-tailed policy parameterizations may be used, which exhibit a bounded score function, but doing so can cause instability in algorithmic updates. To address these issues, in this work, we study the convergence of policy gradient algorithms under heavy-tailed parameterizations, which we propose to stabilize with a combination of mirror ascent-type updates and gradient tracking. Our main theoretical contribution is the establishment that this scheme converges with constant batch sizes, whereas prior works require these parameters to respectively shrink to null or grow to infinity. Experimentally, this scheme under a heavy-tailed policy parameterization yields improved reward accumulation across a variety of settings as compared with standard benchmarks.

Thu 21 July 12:55 - 13:00 PDT

Spotlight
Asking for Knowledge (AFK): Training RL Agents to Query External Knowledge Using Language

Iou-Jen Liu · Xingdi Yuan · Marc-Alexandre Côté · Pierre-Yves Oudeyer · Alex Schwing

To solve difficult tasks, humans ask questions to acquire knowledge from external sources. In contrast, classical reinforcement learning agents lack such an ability and often resort to exploratory behavior. This is exacerbated as few present-day environments support querying for knowledge. In order to study how agents can be taught to query external knowledge via language, we first introduce two new environments: the grid-world-based Q-BabyAI and the text-based Q-TextWorld. In addition to physical interactions, an agent can query an external knowledge source specialized for these environments to gather information. Second, we propose the `Asking for Knowledge’ (AFK) agent, which learns to generate language commands to query for meaningful knowledge that helps solve the tasks. AFK leverages a non-parametric memory, a pointer mechanism and an episodic exploration bonus to tackle (1) irrelevant information, (2) a large query language space, (3) delayed reward for making meaningful queries. Extensive experiments demonstrate that the AFK agent outperforms recent baselines on the challenging Q-BabyAI and Q-TextWorld environments.

Thu 21 July 13:00 - 13:05 PDT

Spotlight
Addressing Optimism Bias in Sequence Modeling for Reinforcement Learning

Adam Villaflor · Zhe Huang · Swapnil Pande · John Dolan · Jeff Schneider

Impressive results in natural language processing (NLP) based on the Transformer neural network architecture have inspired researchers to explore viewing offline reinforcement learning (RL) as a generic sequence modeling problem. Recent works based on this paradigm have achieved state-of-the-art results in several of the mostly deterministic offline Atari and D4RL benchmarks. However, because these methods jointly model the states and actions as a single sequencing problem, they struggle to disentangle the effects of the policy and world dynamics on the return. Thus, in adversarial or stochastic environments, these methods lead to overly optimistic behavior that can be dangerous in safety-critical systems like autonomous driving. In this work, we propose a method that addresses this optimism bias by explicitly disentangling the policy and world models, which allows us at test time to search for policies that are robust to multiple possible futures in the environment. We demonstrate our method’s superior performance on a variety of autonomous driving tasks in simulation.

Thu 21 July 13:05 - 13:25 PDT

Oral
An Analytical Update Rule for General Policy Optimization

Hepeng Li · Nicholas Clavette · Haibo He

We present an analytical policy update rule that is independent of parametric function approximators. The policy update rule is suitable for optimizing general stochastic policies and has a monotonic improvement guarantee. It is derived from a closed-form solution to trust-region optimization using calculus of variation, following a new theoretical result that tightens existing bounds for policy improvement using trust-region methods. The update rule builds a connection between policy search methods and value function methods. Moreover, off-policy reinforcement learning algorithms can be derived from the update rule since it does not need to compute integration over on-policy states. In addition, the update rule extends immediately to cooperative multi-agent systems when policy updates are performed by one agent at a time.

Thu 21 July 13:25 - 13:30 PDT

Spotlight
Making Linear MDPs Practical via Contrastive Representation Learning

Tianjun Zhang · Tongzheng Ren · Mengjiao Yang · Joseph E Gonzalez · Dale Schuurmans · Bo Dai

It is common to address the curse of dimensionality in Markov decision processes (MDPs) by exploiting low-rank representations. This motivates much of the recent theoretical study on linear MDPs. However, most approaches require a given representation under unrealistic assumptions about the normalization of the decomposition or introduce unresolved computational challenges in practice.Instead, we consider an alternative definition of linear MDPs that automatically ensures normalization while allowing efficient representation learning via contrastive estimation. The framework also admits confidence-adjusted index algorithms, enabling an efficient and principled approach to incorporating optimism or pessimism in the face of uncertainty. To the best of our knowledge, this provides the first practical representation learning method for linear MDPs that achieves both strong theoretical guarantees and empirical performance. Theoretically, we prove that the proposed algorithm is sample efficient in both the online and offline settings. Empirically, we demonstrate superior performance over existing state-of-the-art model-based and model-free algorithms on several benchmarks.

Thu 21 July 13:30 - 13:35 PDT

Spotlight
Flow-based Recurrent Belief State Learning for POMDPs

Xiaoyu Chen · Yao Mu · Ping Luo · Shengbo Li · Jianyu Chen

Partially Observable Markov Decision Process (POMDP) provides a principled and generic framework to model real world sequential decision making processes but yet remains unsolved, especially for high dimensional continuous space and unknown models. The main challenge lies in how to accurately obtain the belief state, which is the probability distribution over the unobservable environment states given historical information. Accurately calculating this belief state is a precondition for obtaining an optimal policy of POMDPs. Recent advances in deep learning techniques show great potential to learn good belief states. However, existing methods can only learn approximated distribution with limited flexibility. In this paper, we introduce the \textbf{F}l\textbf{O}w-based \textbf{R}ecurrent \textbf{BE}lief \textbf{S}tate model (FORBES), which incorporates normalizing flows into the variational inference to learn general continuous belief states for POMDPs. Furthermore, we show that the learned belief states can be plugged into downstream RL algorithms to improve performance. In experiments, we show that our methods successfully capture the complex belief states that enable multi-modal predictions as well as high quality reconstructions, and results on challenging visual-motor control tasks show that our method achieves superior performance and sample efficiency.

Thu 21 July 13:35 - 13:40 PDT

Spotlight
A Parametric Class of Approximate Gradient Updates for Policy Optimization

Ramki Gummadi · Saurabh Kumar · Junfeng Wen · Dale Schuurmans

Approaches to policy optimization have been motivated from diverse principles, based on how the parametric model is interpreted (e.g. value versus policy representation) or how the learning objective is formulated, yet they share a common goal of maximizing expected return. To better capture the commonalities and identify key differences between policy optimization methods, we develop a unified perspective that re-expresses the underlying updates in terms of a limited choice of gradient form and scaling function. In particular, we identify a parameterized space of approximate gradient updates for policy optimization that is highly structured, yet covers both classical and recent examples, including PPO. As a result, we obtain novel yet well motivated updates that generalize existing algorithms in a way that can deliver benefits both in terms of convergence speed and final result quality. An experimental investigation demonstrates that the additional degrees of freedom provided in the parameterized family of updates can be leveraged to obtain non-trivial improvements both in synthetic domains and on popular deep RL benchmarks.

Thu 21 July 13:40 - 13:45 PDT

Spotlight
Retrieval-Augmented Reinforcement Learning

Anirudh Goyal · Abe Friesen Friesen · Andrea Banino · Theophane Weber · Nan Rosemary Ke · Adrià Puigdomenech Badia · Arthur Guez · Mehdi Mirza · Peter Humphreys · Ksenia Konyushkova · Michal Valko · Simon Osindero · Timothy Lillicrap · Nicolas Heess · Charles Blundell

Most deep reinforcement learning (RL) algorithms distill experience into parametric behavior policies or value functions via gradient updates. While effective, this approach has several disadvantages: (1) it is computationally expensive, (2) it can take many updates to integrate experiences into the parametric model, (3) experiences that are not fully integrated do not appropriately influence the agent's behavior, and (4) behavior is limited by the capacity of the model. In this paper we explore an alternative paradigm in which we train a network to map a dataset of past experiences to optimal behavior. Specifically, we augment an RL agent with a retrieval process (parameterized as a neural network) that has direct access to a dataset of experiences. This dataset can come from the agent's past experiences, expert demonstrations, or any other relevant source. The retrieval process is trained to retrieve information from the dataset that may be useful in the current context, to help the agent achieve its goal faster and more efficiently. The proposed method facilitates learning agents that at test time can condition their behavior on the entire dataset and not only the current state, or current trajectory. We integrate our method into two different RL agents: an offline DQN agent and an online R2D2 agent. In offline multi-task problems, we show that the retrieval-augmented DQN agent avoids task interference and learns faster than the baseline DQN agent. On Atari, we show that retrieval-augmented R2D2 learns significantly faster than the baseline R2D2 agent and achieves higher scores. We run extensive ablations to measure the contributions of the components of our proposed method.

Thu 21 July 13:45 - 13:50 PDT

Spotlight
Robust Policy Learning over Multiple Uncertainty Sets

Annie Xie · Shagun Sodhani · Chelsea Finn · Joelle Pineau · Amy Zhang

Reinforcement learning (RL) agents need to be robust to variations in safety-critical environments. While system identification methods provide a way to infer the variation from online experience, they can fail in settings where fast identification is not possible. Another dominant approach is robust RL which produces a policy that can handle worst-case scenarios, but these methods are generally designed to achieve robustness to a single uncertainty set that must be specified at train time. Towards a more general solution, we formulate the multi-set robustness problem to learn a policy robust to different perturbation sets. We then design an algorithm that enjoys the benefits of both system identification and robust RL: it reduces uncertainty where possible given a few interactions, but can still act robustly with respect to the remaining uncertainty. On a diverse set of control tasks, our approach demonstrates improved worst-case performance on new environments compared to prior methods based on system identification and on robust RL alone.

Thu 21 July 13:50 - 13:55 PDT

Spotlight
Policy Diagnosis via Measuring Role Diversity in Cooperative Multi-agent RL

Siyi Hu · Chuanlong Xie · Xiaodan Liang · Xiaojun Chang

Cooperative multi-agent reinforcement learning (MARL) is making rapid progress for solving tasks in a grid world and real-world scenarios, in which agents are given different attributes and goals, resulting in different behavior through the whole multi-agent task. In this study, we quantify the agent's behavior difference and build its relationship with the policy performance via {\bf Role Diversity}, a metric to measure the characteristics of MARL tasks. We define role diversity from three perspectives: action-based, trajectory-based, and contribution-based to fully measure a multi-agent task. Through theoretical analysis, we find that the error bound in MARL can be decomposed into three parts that have a strong relation to the role diversity. The decomposed factors can significantly impact policy optimization in three popular directions including parameter sharing, communication mechanism, and credit assignment. The main experimental platforms are based on {\bf Multiagent Particle Environment (MPE) }and {\bf The StarCraft Multi-Agent Challenge (SMAC)}. Extensive experiments clearly show that role diversity can serve as a robust measurement for the characteristics of a multi-agent cooperation task and help diagnose whether the policy fits the current multi-agent system for better policy performance.

Thu 21 July 13:55 - 14:00 PDT

Spotlight
Learning Dynamics and Generalization in Deep Reinforcement Learning

Clare Lyle · Mark Rowland · Will Dabney · Marta Kwiatkowska · Yarin Gal

Solving a reinforcement learning (RL) problem poses two competing challenges: fitting a potentially discontinuous value function, and generalizing well to new observations. In this paper, we analyze the learning dynamics of temporal difference algorithms to gain novel insight into the tension between these two objectives.We show theoretically that temporal difference learning encourages agents to fit non-smooth components of the value function early in training, and at the same time induces the second-order effect of discouraging generalization.We corroborate these findings in deep RL agents trained on a range of environments, finding that neural networks trained using temporal difference algorithms on dense reward tasks exhibit weaker generalization between states than randomly initialized networks and networks trained with policy gradient methods.Finally, we investigate how post-training policy distillation may avoid this pitfall, and show that this approach improves generalization to novel environments in the ProcGen suite and improves robustness to input perturbations.