Skip to yearly menu bar Skip to main content


Session

Deep Learning: Attention Mechanisms

Hall F

Moderator: Jared Tanner

Abstract:

Chat is not available.

Thu 21 July 10:30 - 10:35 PDT

Spotlight
Ripple Attention for Visual Perception with Sub-quadratic Complexity

Lin Zheng · Huijie Pan · Lingpeng Kong

Transformer architectures are now central to sequence modeling tasks. At its heart is the attention mechanism, which enables effective modeling of long-term dependencies in a sequence. Recently, transformers have been successfully applied in the computer vision domain, where 2D images are first segmented into patches and then treated as 1D sequences. Such linearization, however, impairs the notion of spatial locality in images, which bears important visual clues. To bridge the gap, we propose \emph{ripple attention}, a sub-quadratic attention mechanism for vision transformers. Built upon the recent kernel-based efficient attention mechanisms, we design a novel dynamic programming algorithm that weights contributions of different tokens to a query with respect to their relative spatial distances in the 2D space in linear observed time.Extensive experiments and analyses demonstrate the effectiveness of ripple attention on various visual tasks.

Thu 21 July 10:35 - 10:40 PDT

Spotlight
Self-supervised Models are Good Teaching Assistants for Vision Transformers

Haiyan Wu · Yuting Gao · Yinqi Zhang · Shaohui Lin · Yuan Xie · Xing Sun · Ke Li

Transformers have shown remarkable progress on computer vision tasks in the past year. Compared to their CNN counterparts, transformers usually need the help of distillation to achieve comparable results on middle or small sized datasets. Meanwhile, recent researches discover that when transformers are trained with supervised and self-supervised manner respectively, the captured patterns are quite different both qualitatively and quantitatively. These findings motivate us to introduce an self-supervised teaching assistant (SSTA) besides the commonly used supervised teacher to improve the performance of transformers. Specifically, we propose a head-level knowledge distillation method that selects the most important head of the supervised teacher and self-supervised teaching assistant, and let the student mimic the attention distribution of these two heads, so as to make the student focus on the relationship between tokens deemed by the teacher and the teacher assistant. Extensive experiments verify the effectiveness of SSTA and demonstrate that the proposed SSTA is a good compensation to the supervised teacher. Meanwhile, some analytical experiments towards multiple perspectives (e.g. prediction, shape bias, robustness, and transferability to downstream tasks) with supervised teachers, self-supervised teaching assistants and students are inductive and may inspire future researches.

Thu 21 July 10:40 - 10:45 PDT

Spotlight
Plug-In Inversion: Model-Agnostic Inversion for Vision with Data Augmentations

Amin Ghiasi · Hamid Kazemi · Steven Reich · Chen Zhu · Micah Goldblum · Tom Goldstein

Existing techniques for model inversion typically rely on hard-to-tune regularizers, such as total variation or feature regularization, which must be individually calibrated for each network in order to produce adequate images. In this work, we introduce Plug-In Inversion, which relies on a simple set of augmentations and does not require excessive hyper-parameter tuning. Under our proposed augmentation-based scheme, the same set of augmentation hyper-parameters can be used for inverting a wide range of image classification models, regardless of input dimensions or the architecture. We illustrate the practicality of our approach by inverting Vision Transformers (ViTs) and Multi-Layer Perceptrons (MLPs) trained on the ImageNet dataset, tasks which to the best of our knowledge have not been successfully accomplished by any previous works.

Thu 21 July 10:45 - 10:50 PDT

Spotlight
In defense of dual-encoders for neural ranking

Aditya Menon · Sadeep Jayasumana · Ankit Singh Rawat · Seungyeon Kim · Sashank Jakkam Reddi · Sanjiv Kumar

Transformer-based models such as BERT have proven successful in information retrieval problem, which seek to identify relevant documents for a given query. There are two broad flavours of such models: cross-attention (CA) models, which learn a joint embedding for the query and document, and dual-encoder (DE) models, which learn separate embeddings for the query and document. Empirically, CA models are often found to be more accurate, which has motivated a series of works seeking to bridge this gap. However, a more fundamental question remains less explored: does this performance gap reflect an inherent limitation in the capacity of DE models, or a limitation in the training of such models? And does such an understanding suggest a principled means of improving DE models? In this paper, we study these questions, with three contributions. First, we establish theoretically that with a sufficiently large embedding dimension, DE models have the capacity to model a broad class of score distributions. Second, we show empirically that on real-world problems, DE models may overfit to spurious correlations in the training set, and thus under-perform on test samples. To mitigate this behaviour, we propose a suitable distillation strategy, and confirm its practical efficacy on the MSMARCO-Passage and Natural Questions benchmarks.

Thu 21 July 10:50 - 10:55 PDT

Spotlight
From block-Toeplitz matrices to differential equations on graphs: towards a general theory for scalable masked Transformers

Krzysztof Choromanski · Han Lin · Haoxian Chen · Tianyi Zhang · Arijit Sehanobish · Valerii Likhosherstov · Jack Parker-Holder · Tamas Sarlos · Adrian Weller · Thomas Weingarten

In this paper we provide, to the best of our knowledge, the first comprehensive approach for incorporating various masking mechanisms into Transformers architectures in a scalable way. We show that recent results on linear causal attention (Choromanski et al., 2021) and log-linear RPE-attention (Luo et al., 2021) are special cases of this general mechanism. However by casting the problem as a topological (graph-based) modulation of unmasked attention, we obtain several results unknown before, including efficient d-dimensional RPE-masking and graph-kernel masking. We leverage many mathematical techniques ranging from spectral analysis through dynamic programming and random walks to new algorithms for solving Markov processes on graphs. We provide a corresponding empirical evaluation.

Thu 21 July 10:55 - 11:00 PDT

Spotlight
Linear Complexity Randomized Self-attention Mechanism

Lin Zheng · Chong Wang · Lingpeng Kong

Recently, random feature attentions (RFAs) are proposed to approximate the softmax attention in linear time and space complexity by linearizing the exponential kernel. In this paper, we first propose a novel perspective to understand the bias in such approximation by recasting RFAs as self-normalized importance samplers. This perspective further sheds light on an \emph{unbiased} estimator for the whole softmax attention, called randomized attention (RA). RA constructs positive random features via query-specific distributions and enjoys greatly improved approximation fidelity, albeit exhibiting quadratic complexity. By combining the expressiveness in RA and the efficiency in RFA, we develop a novel linear complexity self-attention mechanism called linear randomized attention (LARA). Extensive experiments across various domains demonstrate that RA and LARA significantly improve the performance of RFAs by a substantial margin.

Thu 21 July 11:00 - 11:05 PDT

Spotlight
Efficient Representation Learning via Adaptive Context Pooling

Chen Huang · Walter Talbott · Navdeep Jaitly · Joshua M Susskind

Self-attention mechanisms model long-range context by using pairwise attention between all input tokens. In doing so, they assume a fixed attention granularity defined by the individual tokens (e.g., text characters or image pixels), which may not be optimal for modeling complex dependencies at higher levels. In this paper, we propose ContextPool to address this problem by adapting the attention granularity for each token. Inspired by the success of ConvNets that are combined with pooling to capture long-range dependencies, we learn to pool neighboring features for each token before computing attention in a given attention layer. The pooling weights and support size are adaptively determined, allowing the pooled features to encode meaningful context with varying scale. We show that ContextPool makes attention models more expressive, achieving strong performance often with fewer layers and thus significantly reduced cost. Experiments validate that our ContextPool module, when plugged into transformer models, matches or surpasses state-of-the-art performance using less compute on several language and image benchmarks, outperforms recent works with learned context sizes or sparse attention patterns, and is also applicable to ConvNets for efficient feature learning.

Thu 21 July 11:05 - 11:25 PDT

Oral
Toward Compositional Generalization in Object-Oriented World Modeling

Linfeng Zhao · Lingzhi Kong · Robin Walters · Lawson Wong

Compositional generalization is a critical ability in learning and decision-making. We focus on the setting of reinforcement learning in object-oriented environments to study compositional generalization in world modeling. We (1) formalize the compositional generalization problem with an algebraic approach and (2) study how a world model can achieve that. We introduce a conceptual environment, Object Library, and two instances, and deploy a principled pipeline to measure the generalization ability. Motivated by the formulation, we analyze several methods with exact or no compositional generalization ability using our framework, and design a differentiable approach, Homomorphic Object-oriented World Model (HOWM), that achieves soft but more efficient compositional generalization.

Thu 21 July 11:25 - 11:30 PDT

Spotlight
Fast Population-Based Reinforcement Learning on a Single Machine

Arthur Flajolet · Claire Bizon Monroc · Karim Beguir · Thomas Pierrot

Training populations of agents has demonstrated great promise in Reinforcement Learning for stabilizing training, improving exploration and asymptotic performance, and generating a diverse set of solutions. However, population-based training is often not considered by practitioners as it is perceived to be either prohibitively slow (when implemented sequentially), or computationally expensive (if agents are trained in parallel on independent accelerators). In this work, we compare implementations and revisit previous studies to show that the judicious use of compilation and vectorization allows population-based training to be performed on a single machine with one accelerator with minimal overhead compared to training a single agent. We also show that, when provided with a few accelerators, our protocols extend to large population sizes for applications such as hyperparameter tuning. We hope that this work and the public release of our code will encourage practitioners to use population-based learning techniques more frequently for their research and applications.

Thu 21 July 11:30 - 11:35 PDT

Spotlight
NeuralEF: Deconstructing Kernels by Deep Neural Networks

Zhijie Deng · Jiaxin Shi · Jun Zhu

Learning the principal eigenfunctions of an integral operator defined by a kernel and a data distribution is at the core of many machine learning problems. Traditional nonparametric solutions based on the Nystrom formula suffer from scalability issues. Recent work has resorted to a parametric approach, i.e., training neural networks to approximate the eigenfunctions. However, the existing method relies on an expensive orthogonalization step and is difficult to implement. We show that these problems can be fixed by using a new series of objective functions that generalizes the EigenGame to function space. We test our method on a variety of supervised and unsupervised learning problems and show it provides accurate approximations to the eigenfunctions of polynomial, radial basis, neural network Gaussian process, and neural tangent kernels. Finally, we demonstrate our method can scale up linearised Laplace approximation of deep neural networks to modern image classification datasets through approximating the Gauss-Newton matrix. Code is available at https://github.com/thudzj/neuraleigenfunction.

Thu 21 July 11:35 - 11:40 PDT

Spotlight
Visual Attention Emerges from Recurrent Sparse Reconstruction

Baifeng Shi · Yale Song · Neel Joshi · Trevor Darrell · Xin Wang

Visual attention helps achieve robust perception under noise, corruption, and distribution shifts in human vision, which are areas where modern neural networks still fall short. We present VARS, Visual Attention from Recurrent Sparse reconstruction, a new attention formulation built on two prominent features of the human visual attention mechanism: recurrency and sparsity. Related features are grouped together via recurrent connections between neurons, with salient objects emerging via sparse regularization. VARS adopts an attractor network with recurrent connections that converges toward a stable pattern over time.Network layers are represented as ordinary differential equations (ODEs), formulating attention as a recurrent attractor network that equivalently optimizes the sparse reconstruction of input using a dictionary of ``templates'' encodingunderlying patterns of data. We show that self-attention is a special case of VARS with a single-step optimization and no sparsity constraint. VARS can be readily used as a replacement for self-attention in popular vision transformers, consistently improving their robustness across various benchmarks.

Thu 21 July 11:40 - 11:45 PDT

Spotlight
Transformer Quality in Linear Time

Weizhe Hua · Zihang Dai · Hanxiao Liu · Quoc Le

We revisit the design choices in Transformers, and propose methods to address their weaknesses in handling long sequences. First, we propose a simple layer named gated attention unit, which allows the use of a weaker single-head attention with minimal quality loss. We then propose a linear approximation method complementary to this new layer, which is accelerator-friendly and highly competitive in quality. The resulting model, named FLASH, matches the perplexity of improved Transformers over both short (512) and long (8K) context lengths, achieving training speedups of up to 4.9x on Wiki-40B and 12.1x on PG-19 for auto-regressive language modeling, and 4.8x on C4 for masked language modeling.

Thu 21 July 11:45 - 11:50 PDT

Spotlight
What Dense Graph Do You Need for Self-Attention?

Yuxin Wang · Chu-Tak Lee · Qipeng Guo · Zhangyue Yin · yunhua zhou · Xuanjing Huang · Xipeng Qiu

Transformers have made progress in miscellaneous tasks, but suffer from quadratic computational and memory complexities. Recent works propose sparse transformers with attention on sparse graphs to reduce complexity and remain strong performance. While effective, the crucial parts of how dense a graph needs to be to perform well are not fully explored. In this paper, we propose Normalized Information Payload (NIP), a graph scoring function measuring information transfer on graph, which provides an analysis tool for trade-offs between performance and complexity. Guided by this theoretical analysis, we present Hypercube Transformer, a sparse transformer that models token interactions in a hypercube and shows comparable or even better results with vanilla transformer while yielding $O(N\log N)$ complexity with sequence length $N$. Experiments on tasks requiring various sequence lengths lay validation for our graph function well.

Thu 21 July 11:50 - 11:55 PDT

Spotlight
Dual Decomposition of Convex Optimization Layers for Consistent Attention in Medical Images

Tom Ron · Tamir Hazan

A key concern in integrating machine learning models in medicine is the ability to interpret their reasoning. Popular explainability methods have demonstrated satisfactory results in natural image recognition, yet in medical image analysis, many of these approaches provide partial and noisy explanations. Recently, attention mechanisms have shown compelling results both in their predictive performance and in their interpretable qualities. A fundamental trait of attention is that it leverages salient parts of the input which contribute to the model's prediction. To this end, our work focuses on the explanatory value of attention weight distributions. We propose a multi-layer attention mechanism that enforces consistent interpretations between attended convolutional layers using convex optimization. We apply duality to decompose the consistency constraints between the layers by reparameterizing their attention probability distributions. We further suggest learning the dual witness by optimizing with respect to our objective; thus, our implementation uses standard back-propagation, hence it is highly efficient. While preserving predictive performance, our proposed method leverages weakly annotated medical imaging data and provides complete and faithful explanations to the model's prediction.

Thu 21 July 11:55 - 12:00 PDT

Spotlight
Multi Resolution Analysis (MRA) for Approximate Self-Attention

Zhanpeng Zeng · Sourav Pal · Jeffery Kline · Glenn Fung · Vikas Singh

Transformers have emerged as a preferred model for many tasks in natural langugage processing and vision. Recent efforts on training and deploying Transformers more efficiently have identified many strategies to approximate the self-attention matrix, a key module in a Transformer architecture. Effective ideas include various prespecified sparsity patterns, low-rank basis expansions and combinations thereof. In this paper, we revisit classical Multiresolution Analysis (MRA) concepts such as Wavelets, whose potential value in this setting remains underexplored thus far. We show that simple approximations based on empirical feedback and design choices informed by modern hardware and implementation challenges, eventually yield a MRA-based approach for self-attention with an excellent performance profile across most criteria of interest. We undertake an extensive set of experiments and demonstrate that this multi-resolution scheme outperforms most efficient self-attention proposals and is favorable for both short and long sequences. Code is available at \url{https://github.com/mlpen/mra-attention}.