Reinforcement Learning

Room 307

Moderator : Pulkit Agrawal

Wed 20 Jul 10:15 a.m. PDT — 11:45 a.m. PDT


Chat is not available.

Wed 20 July 10:15 - 10:20 PDT

Biased Gradient Estimate with Drastic Variance Reduction for Meta Reinforcement Learning

Yunhao Tang

Despite the empirical success of meta reinforcement learning (meta-RL), there are still a number poorly-understood discrepancies between theory and practice. Critically, biased gradient estimates are almost always implemented in practice, whereas prior theory on meta-RL only establishes convergence under unbiased gradient estimates. In this work, we investigate such a discrepancy. In particular, (1) We show that unbiased gradient estimates have variance $\Theta(N)$ which linearly depends on the sample size $N$ of the inner loop updates; (2) We propose linearized score function (LSF) gradient estimates, which have bias $\mathcal{O}(1/\sqrt{N})$ and variance $\mathcal{O}(1/N)$; (3) We show that most empirical prior work in fact implements variants of the LSF gradient estimates. This implies that practical algorithms "accidentally" introduce bias to achieve better performance; (4) We establish theoretical guarantees for the LSF gradient estimates in meta-RL regarding its convergence to stationary points, showing better dependency on $N$ than prior work when $N$ is large.

Wed 20 July 10:20 - 10:25 PDT

Analysis of Stochastic Processes through Replay Buffers

Shirli Di-Castro Shashua · Shie Mannor · Dotan Di Castro

Replay buffers are a key component in many reinforcement learning schemes. Yet, their theoretical properties are not fully understood. In this paper we analyze a system where a stochastic process X is pushed into a replay buffer and then randomly sampled to generate a stochastic process Y from the replay buffer. We provide an analysis of the properties of the sampled process such as stationarity, Markovity and autocorrelation in terms of the properties of the original process. Our theoretical analysis sheds light on why replay buffer may be a good de-correlator. Our analysis provides theoretical tools for proving the convergence of replay buffer based algorithms which are prevalent in reinforcement learning schemes.

Wed 20 July 10:25 - 10:30 PDT

Cascaded Gaps: Towards Logarithmic Regret for Risk-Sensitive Reinforcement Learning

Yingjie Fei · Ruitu Xu

In this paper, we study gap-dependent regret guarantees for risk-sensitive reinforcement learning based on the entropic risk measure. We propose a novel definition of sub-optimality gaps, which we call cascaded gaps, and we discuss their key components that adapt to underlying structures of the problem. Based on the cascaded gaps, we derive non-asymptotic and logarithmic regret bounds for two model-free algorithms under episodic Markov decision processes. We show that, in appropriate settings, these bounds feature exponential improvement over existing ones that are independent of gaps. We also prove gap-dependent lower bounds, which certify the near optimality of the upper bounds.

Wed 20 July 10:30 - 10:35 PDT

Communicating via Markov Decision Processes

Samuel Sokota · Christian Schroeder · Maximilian Igl · Luisa Zintgraf · Phil Torr · Martin Strohmeier · Zico Kolter · Shimon Whiteson · Jakob Foerster

We consider the problem of communicating exogenous information by means of Markov decision process trajectories. This setting, which we call a Markov coding game (MCG), generalizes both source coding and a large class of referential games. MCGs also isolate a problem that is important in decentralized control settings in which cheap-talk is not available---namely, they require balancing communication with the associated cost of communicating. We contribute a theoretically grounded approach to MCGs based on maximum entropy reinforcement learning and minimum entropy coupling that we call MEME. Due to recent breakthroughs in approximation algorithms for minimum entropy coupling, MEME is not merely a theoretical algorithm, but can be applied to practical settings. Empirically, we show both that MEME is able to outperform a strong baseline on small MCGs and that MEME is able to achieve strong performance on extremely large MCGs. To the latter point, we demonstrate that MEME is able to losslessly communicate binary images via trajectories of Cartpole and Pong, while simultaneously achieving the maximal or near maximal expected returns, and that it is even capable of performing well in the presence of actuator noise.

Wed 20 July 10:35 - 10:40 PDT

PAGE-PG: A Simple and Loopless Variance-Reduced Policy Gradient Method with Probabilistic Gradient Estimation

Matilde Gargiani · Andrea Zanelli · Andrea Martinelli · Tyler Summers · John Lygeros

Despite their success, policy gradient methods suffer from high variance of the gradient estimator, which can result in unsatisfactory sample complexity. Recently, numerous variance-reduced extensions of policy gradient methods with provably better sample complexity and competitive numerical performance have been proposed.After a compact survey on some of the main variance-reduced REINFORCE-type methods, we propose ProbAbilistic Gradient Estimation for Policy Gradient (PAGE-PG), a novel loopless variance-reduced policy gradient method based on a probabilistic switch between two types of update. Our method is inspired by the PAGE estimator for supervised learning and leverages importance sampling to obtain an unbiased gradient estimator. We show that PAGE-PG enjoys a $\mathcal{O}\left( \epsilon^{-3} \right)$ average sample complexity to reach an $\epsilon$-stationary solution, which matches the sample complexity of its most competitive counterparts under the same setting. A numerical evaluation confirms the competitive performance of our method on classical control tasks.

Wed 20 July 10:40 - 10:45 PDT

DNS: Determinantal Point Process Based Neural Network Sampler for Ensemble Reinforcement Learning

Hassam Sheikh · Kizza Nandyose Frisbee · mariano phielipp

The application of an ensemble of neural networks is becoming an imminent tool for advancing state-of-the-art deep reinforcement learning algorithms. However, training these large numbers of neural networks in the ensemble has anexceedingly high computation cost which may become a hindrance in training large-scale systems. In this paper, we propose DNS: a DeterminantalPoint Process based Neural Network Sampler that specifically uses k-DPP to sample a subset of neural networks for backpropagation at every training step thus significantly reducing the training time and computation cost. We integrated DNS in REDQ for continuous control tasks and evaluated on MuJoCo environments. Our experiments show that DNS augmented REDQ matches the baseline REDQ in terms of average cumulative reward and achieves this using less than 50% computation when measured in FLOPS. The code is available at

Wed 20 July 10:45 - 11:05 PDT

Planning with Diffusion for Flexible Behavior Synthesis

Michael Janner · Yilun Du · Josh Tenenbaum · Sergey Levine

Model-based reinforcement learning methods often use learning only for the purpose of recovering an approximate dynamics model, offloading the rest of the decision-making work to classical trajectory optimizers.While conceptually simple, this combination has a number of empirical shortcomings, suggesting that learned models may not be well-suited to standard trajectory optimization.In this paper, we consider what it would look like to fold as much of the trajectory optimization pipeline as possible into the modeling problem, such that sampling from the model and planning with it become nearly identical.The core of our technical approach lies in a diffusion probabilistic model that plans by iteratively denoising trajectories.We show how classifier-guided sampling and image inpainting can be reinterpreted as coherent planning strategies, explore the unusual and useful properties of diffusion-based planning methods, and demonstrate the effectiveness of our framework in control settings that emphasize long-horizon decision-making and test-time flexibility.

Wed 20 July 11:05 - 11:10 PDT

A Temporal-Difference Approach to Policy Gradient Estimation

Samuele Tosatto · Andrew Patterson · Martha White · A. Mahmood

The policy gradient theorem (Sutton et al., 2000) prescribes the usage of a cumulative discounted state distribution under the target policy to approximate the gradient. Most algorithms based on this theorem, in practice, break this assumption, introducing a distribution shift that can cause the convergence to poor solutions. In this paper, we propose a new approach of reconstructing the policy gradient from the start state without requiring a particular sampling strategy. The policy gradient calculation in this form can be simplified in terms of a gradient critic, which can be recursively estimated due to a new Bellman equation of gradients. By using temporal-difference updates of the gradient critic from an off-policy data stream, we develop the first estimator that side-steps the distribution shift issue in a model-free way. We prove that, under certain realizability conditions, our estimator is unbiased regardless of the sampling strategy. We empirically show that our technique achieves a superior bias-variance trade-off and performance in presence of off-policy samples.

Wed 20 July 11:10 - 11:15 PDT

MASER: Multi-Agent Reinforcement Learning with Subgoals Generated from Experience Replay Buffer

JEON JEEWON · WOOJUN KIM · Whiyoung Jung · Youngchul Sung

In this paper, we consider cooperative multi-agent reinforcement learning (MARL) with sparse reward. To tackle this problem, we propose a novel method named MASER: MARL with subgoals generated from experience replay buffer. Under the widely-used assumption of centralized training with decentralized execution and consistent Q-value decomposition for MARL, MASER automatically generates proper subgoals for multiple agents from the experience replay buffer by considering both individual Q-value and total Q-value. Then, MASER designs individual intrinsic reward for each agent based on actionable representation relevant to Q-learning so that the agents reach their subgoals while maximizing the joint action value. Numerical results show that MASER significantly outperforms StarCraft II micromanagement benchmark compared to other state-of-the-art MARL algorithms.

Wed 20 July 11:15 - 11:20 PDT

Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency

Qi Cai · Zhuoran Yang · Zhaoran Wang

We study reinforcement learning for partially observed Markov decision processes (POMDPs) with infinite observation and state spaces, which remains less investigated theoretically. To this end, we make the first attempt at bridging partial observability and function approximation for a class of POMDPs with a linear structure. In detail, we propose a reinforcement learning algorithm (Optimistic Exploration via Adversarial Integral Equation or OP-TENET) that attains an $\epsilon$-optimal policy within $O(1/\epsilon^2)$ episodes. In particular, the sample complexity scales polynomially in the intrinsic dimension of the linear structure and is independent of the size of the observation and state spaces. The sample efficiency of OP-TENET is enabled by a sequence of ingredients: (i) a Bellman operator with finite memory, which represents the value function in a recursive manner, (ii) the identification and estimation of such an operator via an adversarial integral equation, which features a smoothed discriminator tailored to the linear structure, and (iii) the exploration of the observation and state spaces via optimism, which is based on quantifying the uncertainty in the adversarial integral equation.

Wed 20 July 11:20 - 11:25 PDT

Actor-Critic based Improper Reinforcement Learning

Mohammadi Zaki · Avi Mohan · Aditya Gopalan · Shie Mannor

We consider an improper reinforcement learning setting where alearner is given $M$ base controllers for an unknown Markovdecision process, and wishes to combine them optimally to producea potentially new controller that can outperform each of the baseones. This can be useful in tuning across controllers, learnt possibly in mismatched or simulated environments, to obtain a good controller for a given target environment with relatively few trials. Towards this, we propose two algorithms: (1) a Policy Gradient-based approach; and (2) an algorithm that can switch between a simple Actor-Critic (AC) based scheme and a Natural Actor-Critic (NAC) scheme depending on the available information. Both algorithms operate over aclass of improper mixtures of the given controllers. For the first case, we derive convergence rate guarantees assuming access to a gradient oracle. For the AC-based approach we provide convergence rate guarantees to a stationary point in the basic AC case and to a global optimum in the NAC case. Numerical results on (i) the standard control theoretic benchmark of stabilizing an inverted pendulum; and (ii) a constrainedqueueing task show that our improper policy optimization algorithm can stabilize the system even when the base policies at its disposal are unstable.

Wed 20 July 11:25 - 11:30 PDT

On the Sample Complexity of Learning Infinite-horizon Discounted Linear Kernel MDPs

Yuanzhou Chen · Jiafan He · Quanquan Gu

We study reinforcement learning for infinite-horizon discounted linear kernel MDPs, where the transition probability function is linear in a predefined feature mapping. Existing UCLK \citep{zhou2020provably} algorithm for this setting only has a regret guarantee, which cannot lead to a tight sample complexity bound. In this paper, we extend the uniform-PAC sample complexity from episodic setting to the infinite-horizon discounted setting, and propose a novel algorithm dubbed UPAC-UCLK that achieves an $\Tilde{O}\big(d^2/((1-\gamma)^4\epsilon^2)+1/((1-\gamma)^6\epsilon^2)\big)$ uniform-PAC sample complexity, where $d$ is the dimension of the feature mapping, $\gamma \in(0,1)$ is the discount factor of the MDP and $\epsilon$ is the accuracy parameter. To the best of our knowledge, this is the first $\tilde{O}(1/\epsilon^2)$ sample complexity bound for learning infinite-horizon discounted MDPs with linear function approximation (without access to the generative model).

Wed 20 July 11:30 - 11:35 PDT

The Geometry of Robust Value Functions

Kaixin Wang · Navdeep Kumar · Kuangqi Zhou · Bryan Hooi · Jiashi Feng · Shie Mannor

The space of value functions is a fundamental concept in reinforcement learning. Characterizing its geometric properties may provide insights for optimization and representation. Existing works mainly focus on the value space for Markov Decision Processes (MDPs). In this paper, we study the geometry of the robust value space for the more general Robust MDPs (RMDPs) setting, where transition uncertainties are considered. Specifically, since we find it hard to directly adapt prior approaches to RMDPs, we start with revisiting the non-robust case, and introduce a new perspective that enables us to characterize both the non-robust and robust value space in a similar fashion. The key of this perspective is to decompose the value space, in a state-wise manner, into unions of hypersurfaces. Through our analysis, we show that the robust value space is determined by a set of conic hypersurfaces, each of which contains the robust values of all policies that agree on one state. Furthermore, we find that taking only extreme points in the uncertainty set is sufficient to determine the robust value space. Finally, we discuss some other aspects about the robust value space, including its non-convexity and policy agreement on multiple states.

Wed 20 July 11:35 - 11:40 PDT

Denoised MDPs: Learning World Models Better Than the World Itself

Tongzhou Wang · Simon Du · Antonio Torralba · Phillip Isola · Amy Zhang · Yuandong Tian

The ability to separate signal from noise, and reason with clean abstractions, is critical to intelligence. With this ability, humans can efficiently perform real world tasks without considering all possible nuisance factors. How can artificial agents do the same? What kind of information can agents safely discard as noises? In this work, we categorize information out in the wild into four types based on controllability and relation with reward, and formulate useful information as that which is both controllable and reward-relevant. This framework clarifies the kinds information removed by various prior work on representation learning in reinforcement learning (RL), and leads to our proposed approach of learning a Denoised MDP that explicitly factors out certain noise distractors. Extensive experiments on variants of DeepMind Control Suite and RoboDesk demonstrate superior performance of our denoised world model over using raw observations alone, and over prior works, across policy optimization control tasks as well as the non-control task of joint position regression.Project Page: