T: Learning/Deep Learning Theory

Hall G

Moderator: Fanny Yang


Chat is not available.

Tue 19 July 13:15 - 13:35 PDT

H-Consistency Bounds for Surrogate Loss Minimizers

Pranjal Awasthi · Anqi Mao · Mehryar Mohri · Yutao Zhong

We present a detailed study of estimation errors in terms of surrogate loss estimation errors. We refer to such guarantees as H-consistency bounds, since they account for the hypothesis set H adopted. These guarantees are significantly stronger than H-calibration or H-consistency. They are also more informative than similar excess error bounds derived in the literature, when H is the family of all measurable functions. We prove general theorems providing such guarantees, for both the distribution-dependent and distribution-independent settings. We show that our bounds are tight, modulo a convexity assumption. We also show that previous excess error bounds can be recovered as special cases of our general results. We then present a series of explicit bounds in the case of the zero-one loss, with multiple choices of the surrogate loss and for both the family of linear functions and neural networks with one hidden-layer. We further prove more favorable distribution-dependent guarantees in that case. We also present a series of explicit bounds in the case of the adversarial loss, with surrogate losses based on the supremum of the $\rho$-margin, hinge or sigmoid loss and for the same two general hypothesis sets. Here too, we prove several enhancements of these guarantees under natural distributional assumptions. Finally, we report the results of simulations illustrating our bounds and their tightness.

Tue 19 July 13:35 - 13:40 PDT

Learning General Halfspaces with Adversarial Label Noise via Online Gradient Descent

Ilias Diakonikolas · Vasilis Kontonis · Christos Tzamos · Nikos Zarifis

We study the problem of learning general — i.e., not necessarily homogeneous — halfspaces with adversarial label noise under the Gaussian distribution. Prior work has provided a sophisticated polynomial-time algorithm for this problem. In this work, we show that the problem can be solved directly via online gradient descent applied to a sequence of natural non-convex surrogates. This approach yields a simple iterative learning algorithm for general halfspaces with near-optimal sample complexity, runtime, and error guarantee. At the conceptual level, our work establishes an intriguing connection between learning halfspaces with adversarial noise and online optimization that may find other applications.

Tue 19 July 13:40 - 13:45 PDT

The Teaching Dimension of Regularized Kernel Learners

Hong Qian · Xu-Hui Liu · Chen-Xi Su · Aimin Zhou · Yang Yu

Teaching dimension (TD) is a fundamental theoretical property for understanding machine teaching algorithms. It measures the sample complexity of teaching a target hypothesis to a learner. The TD of linear learners has been studied extensively, whereas the results of teaching non-linear learners are rare. A recent result investigates the TD of polynomial and Gaussian kernel learners. Unfortunately, the theoretical bounds therein show that the TD is high when teaching those non-linear learners. Inspired by the fact that regularization can reduce the learning complexity in machine learning, a natural question is whether the similar fact happens in machine teaching. To answer this essential question, this paper proposes a unified theoretical framework termed STARKE to analyze the TD of regularized kernel learners. On the basis of STARKE, we derive a generic result of any type of kernels. Furthermore, we disclose that the TD of regularized linear and regularized polynomial kernel learners can be strictly reduced. For regularized Gaussian kernel learners, we reveal that, although their TD is infinite, their epsilon-approximate TD can be exponentially reduced compared with that of the unregularized learners. The extensive experimental results of teaching the optimization-based learners verify the theoretical findings.

Tue 19 July 13:45 - 13:50 PDT

Sparse Mixed Linear Regression with Guarantees: Taming an Intractable Problem with Invex Relaxation

Adarsh Barik · Jean Honorio

In this paper, we study the problem of sparse mixed linear regression on an unlabeled dataset that is generated from linear measurements from two different regression parameter vectors. Since the data is unlabeled, our task is to not only figure out a good approximation of regression parameter vectors but also label the dataset correctly. In its original form, this problem is NP-hard. The most popular algorithms to solve this problem (such as Expectation-Maximization) have a tendency to stuck at local minima. We provide a novel invex relaxation for this intractable problem which leads to a solution with provable theoretical guarantees. This relaxation enables exact recovery of data labels. Furthermore, we recover close approximation of regression parameter vectors which match the true parameter vectors in support and sign. Our formulation uses a carefully constructed primal dual witnesses framework for the invex problem. Furthermore, we show that the sample complexity of our method is only logarithmic in terms of the dimension of the regression parameter vectors.

Tue 19 July 13:50 - 13:55 PDT

TURF: Two-Factor, Universal, Robust, Fast Distribution Learning Algorithm

Yi Hao · Ayush Jain · Alon Orlitsky · Vaishakh Ravindrakumar

Approximating distributions from their samples is a canonical statistical-learning problem. One of its most powerful and successful modalities approximates every distribution to an $\ell_1$ distance essentially at most a constant times larger than its closest $t$-piece degree-$d$ polynomial, where $t\ge1$ and $d\ge0$. Letting $c_{t,d}$ denote the smallest such factor, clearly $c_{1,0}=1$, and it can be shown that $c_{t,d}\ge 2$ for all other $t$ and $d$. Yet current computationally efficient algorithms show only $c_{t,1}\le 2.25$ and the bound rises quickly to $c_{t,d}\le 3$ for $d\ge 9$. We derive a near-linear-time and essentially sample-optimal estimator that establishes $c_{t,d}=2$ for all $(t,d)\ne(1,0)$. Additionally, for many practical distributions, the lowest approximation distance is achieved by polynomials with vastly varying number of pieces. We provide a method that estimates this number near-optimally, hence helps approach the best possible approximation. Experiments combining the two techniques confirm improved performance over existing methodologies.

Tue 19 July 13:55 - 14:00 PDT

Multiclass learning with margin: exponential rates with no bias-variance trade-off

Stefano Vigogna · Giacomo Meanti · Ernesto De Vito · Lorenzo Rosasco

We study the behavior of error bounds for multiclass classification under suitable margin conditions. For a wide variety of methods we prove that the classification error under a hard-margin condition decreases exponentially fast without any bias-variance trade-off. Different convergence rates can be obtained in correspondence of different margin assumptions. With a self-contained and instructive analysis we are able to generalize known results from the binary to the multiclass setting.

Tue 19 July 14:00 - 14:20 PDT

Refined Convergence Rates for Maximum Likelihood Estimation under Finite Mixture Models

Tudor Manole · Nhat Ho

We revisit the classical problem of deriving convergence rates for the maximum likelihood estimator (MLE) in finite mixture models. The Wasserstein distance has become a standard loss function for the analysis of parameter estimation in these models, due in part to its ability to circumvent label switching and to accurately characterize the behaviour of fitted mixture components with vanishing weights. However, the Wasserstein distance is only able to capture the worst-case convergence rate among the remaining fitted mixture components. We demonstrate that when the log-likelihood function is penalized to discourage vanishing mixing weights, stronger loss functions can be derived to resolve this shortcoming of the Wasserstein distance. These new loss functions accurately capture the heterogeneity in convergence rates of fitted mixture components, and we use them to sharpen existing pointwise and uniform convergence rates in various classes of mixture models. In particular, these results imply that a subset of the components of the penalized MLE typically converge significantly faster than could have been anticipated from past work. We further show that some of these conclusions extend to the traditional MLE. Our theoretical findings are supported by a simulation study to illustrate these improved convergence rates.

Tue 19 July 14:20 - 14:25 PDT

High Probability Guarantees for Nonconvex Stochastic Gradient Descent with Heavy Tails

Shaojie Li · Yong Liu

Stochastic gradient descent (SGD) is the workhorse in modern machine learning and data-driven optimization. Despite its popularity, existing theoretical guarantees for SGD are mainly derived in expectation and for convex learning problems. High probability guarantees of nonconvex SGD are scarce, and typically rely on “light-tail” noise assumptions and study the optimization and generalization performance separately. In this paper, we develop high probability bounds for nonconvex SGD with a joint perspective of optimization and generalization performance. Instead of the light tail assumption, we consider the gradient noise following a heavy-tailed sub-Weibull distribution, a novel class generalizing the sub-Gaussian and sub-Exponential families to potentially heavier-tailed distributions. Under these complicated settings, we first present high probability bounds with best-known rates in general nonconvex learning, then move to nonconvex learning with a gradient dominance curvature condition, for which we improve the learning guarantees to fast rates. We further obtain sharper learning guarantees by considering a mild Bernstein-type noise condition. Our analysis also reveals the effect of trade-offs between the optimization and generalization performance under different conditions. In the last, we show that gradient clipping can be employed to remove the bounded gradient-type assumptions. Additionally, in this case, the stepsize of SGD is completely oblivious to the knowledge of smoothness.

Tue 19 July 14:25 - 14:30 PDT

An Initial Alignment between Neural Network and Target is Needed for Gradient Descent to Learn

Emmanuel Abbe · Elisabetta Cornacchia · Jan Hazla · Christopher Marquis

This paper introduces the notion of “Initial Alignment” (INAL) between a neural network at initialization and a target function. It is proved that if a network and a Boolean target function do not have a noticeable INAL, then noisy gradient descent with normalized i.i.d. initialization will not learn in polynomial time. Thus a certain amount of knowledge about the target (measured by the INAL) is needed in the architecture design. This also provides an answer to an open problem posed in (AS-NeurIPS’20). The results are based on deriving lower-bounds for descent algorithms on symmetric neural networks without explicit knowledge of the target function beyond its INAL.

Tue 19 July 14:30 - 14:35 PDT

Inductive Biases and Variable Creation in Self-Attention Mechanisms

Benjamin Edelman · Surbhi Goel · Sham Kakade · Cyril Zhang

Self-attention, an architectural motif designed to model long-range interactions in sequential data, has driven numerous recent breakthroughs in natural language processing and beyond. This work provides a theoretical analysis of the inductive biases of self-attention modules. Our focus is to rigorously establish which functions and long-range dependencies self-attention blocks prefer to represent. Our main result shows that bounded-norm Transformer networks "create sparse variables": a single self-attention head can represent a sparse function of the input sequence, with sample complexity scaling only logarithmically with the context length. To support our analysis, we present synthetic experiments to probe the sample complexity of learning sparse Boolean functions with Transformers.

Tue 19 July 14:35 - 14:40 PDT

Topology-aware Generalization of Decentralized SGD

Tongtian Zhu · Fengxiang He · Lan Zhang · Zhengyang Niu · Mingli Song · Dacheng Tao

This paper studies the algorithmic stability and generalizability of decentralized stochastic gradient descent (D-SGD). We prove that the consensus model learned by D-SGD is $\mathcal{O}{(m/N\unaryplus1/m\unaryplus\lambda^2)}$-stable in expectation in the non-convex non-smooth setting, where $N$ is the total sample size of the whole system, $m$ is the worker number, and $1\unaryminus\lambda$ is the spectral gap that measures the connectivity of the communication topology. These results then deliver an $\mathcal{O}{(1/N\unaryplus{({(m^{-1}\lambda^2)}^{\frac{\alpha}{2}}\unaryplus m^{\unaryminus\alpha})}/{N^{1\unaryminus\frac{\alpha}{2}}})}$ in-average generalization bound, which is non-vacuous even when $\lambda$ is closed to $1$, in contrast to vacuous as suggested by existing literature on the projected version of D-SGD. Our theory indicates that the generalizability of D-SGD has a positive correlation with the spectral gap, and can explain why consensus control in initial training phase can ensure better generalization. Experiments of VGG-11 and ResNet-18 on CIFAR-10, CIFAR-100 and Tiny-ImageNet justify our theory. To our best knowledge, this is the first work on the topology-aware generalization of vanilla D-SGD. Code is available at \url{}.

Tue 19 July 14:40 - 14:45 PDT

Understanding Gradient Descent on the Edge of Stability in Deep Learning

Sanjeev Arora · Zhiyuan Li · Abhishek Panigrahi

Deep learning experiments by \citet{cohen2021gradient} using deterministic Gradient Descent (GD) revealed an {\em Edge of Stability (EoS)} phase when learning rate (LR) and sharpness (\emph{i.e.}, the largest eigenvalue of Hessian) no longer behave as in traditional optimization. Sharpness stabilizes around $2/$LR and loss goes up and down across iterations, yet still with an overall downward trend. The current paper mathematically analyzes a new mechanism of implicit regularization in the EoS phase, whereby GD updates due to non-smooth loss landscape turn out to evolve along some deterministic flow on the manifold of minimum loss. This is in contrast to many previous results about implicit bias either relying on infinitesimal updates or noise in gradient. Formally, for any smooth function $L$ with certain regularity condition, this effect is demonstrated for (1) {\em Normalized GD}, i.e., GD with a varying LR $\eta_t =\frac{\eta}{\norm{\nabla L(x(t))}}$ and loss $L$; (2) GD with constant LR and loss $\sqrt{L- \min_x L(x)}$. Both provably enter the Edge of Stability, with the associated flow on the manifold minimizing $\lambda_{1}(\nabla^2 L)$. The above theoretical results have been corroborated by an experimental study.