SA: Trustworthy Machine Learning

Hall F

Moderator: Sharon Li


Chat is not available.

Tue 19 July 13:15 - 13:35 PDT

POEM: Out-of-Distribution Detection with Posterior Sampling

Yifei Ming · Ying Fan · Yixuan Li

Out-of-distribution (OOD) detection is indispensable for machine learning models deployed in the open world. Recently, the use of an auxiliary outlier dataset during training (also known as outlier exposure) has shown promising performance. As the sample space for potential OOD data can be prohibitively large, sampling informative outliers is essential. In this work, we propose a novel posterior sampling based outlier mining framework, POEM, which facilitates efficient use of outlier data and promotes learning a compact decision boundary between ID and OOD data for improved detection. We show that POEM establishes state-of-the-art performance on common benchmarks. Compared to the current best method that uses a greedy sampling strategy, POEM improves the relative performance by 42.0% and 24.2% (FPR95) on CIFAR-10 and CIFAR-100, respectively. We further provide theoretical insights on the effectiveness of POEM for OOD detection.

Tue 19 July 13:35 - 13:40 PDT

Selective Network Linearization for Efficient Private Inference

Minsu Cho · Ameya Joshi · Brandon Reagen · Siddharth Garg · Chinmay Hegde

Private inference (PI) enables inferences directly on cryptographically secure data. While promising to address many privacy issues, it has seen limited use due to extreme runtimes. Unlike plaintext inference, where latency is dominated by FLOPs, in PI non-linear functions (namely ReLU) are the bottleneck. Thus, practical PI demands novel ReLU-aware optimizations. To reduce PI latency we propose a gradient-based algorithm that selectively linearizes ReLUs while maintaining prediction accuracy. We evaluate our algorithm on several standard PI benchmarks. The results demonstrate up to $4.25\%$ more accuracy (iso-ReLU count at 50K) or $2.2\times$ less latency (iso-accuracy at 70\%) than the current state of the art and advance the Pareto frontier across the latency-accuracy space. To complement empirical results, we present a ``no free lunch" theorem that sheds light on how and when network linearization is possible while maintaining prediction accuracy.

Tue 19 July 13:40 - 13:45 PDT

Efficient Computation of Higher-Order Subgraph Attribution via Message Passing

Ping Xiong · Thomas Schnake · Grégoire Montavon · Klaus-robert Mueller · Shinichi Nakajima

Explaining graph neural networks (GNNs) has become more and more important recently. Higher-order interpretation schemes, such as GNN-LRP (layer-wise relevance propagation for GNN), emerged as powerful tools for unraveling how different features interact thereby contributing to explaining GNNs.GNN-LRP gives a relevance attribution of walks between nodes at each layer, and the subgraph attribution is expressed as a sum over exponentially many such walks. In this work, we demonstrate that such exponential complexity can be avoided. In particular, we propose novel algorithmsthat enable to attribute subgraphs with GNN-LRP in linear-time (w.r.t. the network depth). Our algorithms are derived via message passing techniques that make use of the distributive property, therebydirectly computing quantitiesfor higher-order explanations.We further adapt our efficient algorithms to computea generalization of subgraph attributions that also takes into account the neighboring graph features.Experimental results show the significant acceleration of the proposed algorithms and demonstrate the high usefulness and scalability of our novel generalized subgraph attribution method.

Tue 19 July 13:45 - 13:50 PDT

A Theoretical Analysis on Independence-driven Importance Weighting for Covariate-shift Generalization

Renzhe Xu · Xingxuan Zhang · Zheyan Shen · Tong Zhang · Peng Cui

Covariate-shift generalization, a typical case in out-of-distribution (OOD) generalization, requires a good performance on the unknown test distribution, which varies from the accessible training distribution in the form of covariate shift. Recently, independence-driven importance weighting algorithms in stable learning literature have shown empirical effectiveness to deal with covariate-shift generalization on several learning models, including regression algorithms and deep neural networks, while their theoretical analyses are missing. In this paper, we theoretically prove the effectiveness of such algorithms by explaining them as feature selection processes. We first specify a set of variables, named minimal stable variable set, that is the minimal and optimal set of variables to deal with covariate-shift generalization for common loss functions, such as the mean squared loss and binary cross-entropy loss. Afterward, we prove that under ideal conditions, independence-driven importance weighting algorithms could identify the variables in this set. Analysis of asymptotic properties is also provided. These theories are further validated in several synthetic experiments.

Tue 19 July 13:50 - 13:55 PDT

Modular Conformal Calibration

Charles Marx · Shengjia Zhao · Willie Neiswanger · Stefano Ermon

Uncertainty estimates must be calibrated (i.e., accurate) and sharp (i.e., informative) in order to be useful. This has motivated a variety of methods for {\em recalibration}, which use held-out data to turn an uncalibrated model into a calibrated model. However, the applicability of existing methods is limited due to their assumption that the original model is also a probabilistic model. We introduce a versatile class of algorithms for recalibration in regression that we call \emph{modular conformal calibration} (MCC). This framework allows one to transform any regression model into a calibrated probabilistic model. The modular design of MCC allows us to make simple adjustments to existing algorithms that enable well-behaved distribution predictions. We also provide finite-sample calibration guarantees for MCC algorithms. Our framework recovers isotonic recalibration, conformal calibration, and conformal interval prediction, implying that our theoretical results apply to those methods as well. Finally, we conduct an empirical study of MCC on 17 regression datasets. Our results show that new algorithms designed in our framework achieve near-perfect calibration and improve sharpness relative to existing methods.

Tue 19 July 13:55 - 14:15 PDT

Rethinking Image-Scaling Attacks: The Interplay Between Vulnerabilities in Machine Learning Systems

Yue Gao · Ilia Shumailov · Kassem Fawaz

As real-world images come in varying sizes, the machine learning model is part of a larger system that includes an upstream image scaling algorithm. In this paper, we investigate the interplay between vulnerabilities of the image scaling procedure and machine learning models in the decision-based black-box setting. We propose a novel sampling strategy to make a black-box attack exploit vulnerabilities in scaling algorithms, scaling defenses, and the final machine learning model in an end-to-end manner. Based on this scaling-aware attack, we reveal that most existing scaling defenses are ineffective under threat from downstream models. Moreover, we empirically observe that standard black-box attacks can significantly improve their performance by exploiting the vulnerable scaling procedure. We further demonstrate this problem on a commercial Image Analysis API with decision-based black-box attacks.

Tue 19 July 14:15 - 14:20 PDT

Context-Aware Drift Detection

Oliver Cobb · Arnaud Van Looveren

When monitoring machine learning systems, two-sample tests of homogeneity form the foundation upon which existing approaches to drift detection build. They are used to test for evidence that the distribution underlying recent deployment data differs from that underlying the historical reference data. Often, however, various factors such as time-induced correlation mean that batches of recent deployment data are not expected to form an i.i.d. sample from the historical data distribution. Instead we may wish to test for differences in the distributions conditional on \textit{context} that is permitted to change. To facilitate this we borrow machinery from the causal inference domain to develop a more general drift detection framework built upon a foundation of two-sample tests for conditional distributional treatment effects. We recommend a particular instantiation of the framework based on maximum conditional mean discrepancies. We then provide an empirical study demonstrating its effectiveness for various drift detection problems of practical interest, such as detecting drift in the distributions underlying subpopulations of data in a manner that is insensitive to their respective prevalences. The study additionally demonstrates applicability to ImageNet-scale vision problems.

Tue 19 July 14:20 - 14:25 PDT

Accelerating Shapley Explanation via Contributive Cooperator Selection

Guanchu Wang · Yu-Neng Chuang · Mengnan Du · Fan Yang · Quan Zhou · Pushkar Tripathi · Xuanting Cai · Xia Hu

Even though Shapley value provides an effective explanation for a DNN model prediction, the computation relies on the enumeration of all possible input feature coalitions, which leads to the exponentially growing complexity. To address this problem, we propose a novel method SHEAR to significantly accelerate the Shapley explanation for DNN models, where only a few coalitions of input features are involved in the computation. The selection of the feature coalitions follows our proposed Shapley chain rule to minimize the absolute error from the ground-truth Shapley values, such that the computation can be both efficient and accurate. To demonstrate the effectiveness, we comprehensively evaluate SHEAR across multiple metrics including the absolute error from the ground-truth Shapley value, the faithfulness of the explanations, and running speed. The experimental results indicate SHEAR consistently outperforms state-of-the-art baseline methods across different evaluation metrics, which demonstrates its potentials in real-world applications where the computational resource is limited.

Tue 19 July 14:25 - 14:30 PDT

An Equivalence Between Data Poisoning and Byzantine Gradient Attacks

Sadegh Farhadkhani · Rachid Guerraoui · Lê-Nguyên Hoang · Oscar Villemaud

To study the resilience of distributed learning, the Byzantine" literature considers a strong threat model where workers can report arbitrary gradients to the parameter server. Whereas this model helped obtain several fundamental results, it has sometimes been considered unrealistic, when the workers are mostly trustworthy machines. In this paper, we show a surprising equivalence between this model and data poisoning, a threat considered much more realistic. More specifically, we prove that every gradient attack can be reduced to data poisoning, in any personalized federated learning system with PAC guarantees (which we show are both desirable and realistic). This equivalence makes it possible to obtain new impossibility results on the resilience of \emph{any}robust'' learning algorithm to data poisoning in highly heterogeneous applications, as corollaries of existing impossibility theorems on Byzantine machine learning. Moreover, using our equivalence, we derive a practical attack that we show (theoretically and empirically) can be very effective against classical personalized federated learning models.

Tue 19 July 14:30 - 14:35 PDT

DAVINZ: Data Valuation using Deep Neural Networks at Initialization

Zhaoxuan Wu · Yao Shu · Bryan Kian Hsiang Low

Recent years have witnessed a surge of interest in developing trustworthy methods to evaluate the value of data in many real-world applications (e.g., collaborative machine learning, data marketplaces). Existing data valuation methods typically valuate data using the generalization performance of converged machine learning models after their long-term model training, hence making data valuation on large complex deep neural networks (DNNs) unaffordable. To this end, we theoretically derive a domain-aware generalization bound to estimate the generalization performance of DNNs without model training. We then exploit this theoretically derived generalization bound to develop a novel training-free data valuation method named data valuation at initialization (DAVINZ) on DNNs, which consistently achieves remarkable effectiveness and efficiency in practice. Moreover, our training-free DAVINZ, surprisingly, can even theoretically and empirically enjoy the desirable properties that training-based data valuation methods usually attain, thus making it more trustworthy in practice.

Tue 19 July 14:35 - 14:40 PDT

Sample Efficient Learning of Predictors that Complement Humans

Mohammad-Amin Charusaie · Hussein Mozannar · David Sontag · Samira Samadi

One of the goals of learning algorithms is to complement and reduce the burden on human decision makers. The expert deferral setting wherein an algorithm can either predict on its own or defer the decision to a downstream expert helps accomplish this goal. A fundamental aspect of this setting is the need to learn complementary predictors that improve on the human's weaknesses rather than learning predictors optimized for average error. In this work, we provide the first theoretical analysis of the benefit of learning complementary predictors in expert deferral. To enable efficiently learning such predictors, we consider a family of consistent surrogate loss functions for expert deferral and analyze their theoretical properties. Finally, we design active learning schemes that require minimal amount of data of human expert predictions in order to learn accurate deferral systems.