Session
Deep Learning: Robustness
Hall G
Moderator: Jingfeng ZHANG
Detecting Adversarial Examples Is (Nearly) As Hard As Classifying Them
Florian Tramer
Making classifiers robust to adversarial examples is challenging. Thus, many works tackle the seemingly easier task of \emph{detecting} perturbed inputs.We show a barrier towards this goal. We prove a \emph{hardness reduction} between detection and classification of adversarial examples: given a robust detector for attacks at distance $\epsilon$ (in some metric), we show how to build a similarly robust (but inefficient) \emph{classifier} for attacks at distance $\epsilon/2$.Our reduction is \emph{computationally} inefficient, but preserves the \emph{data complexity} of the original detector. The reduction thus cannot be directly used to build practical classifiers.Instead, it is a useful sanity check to test whether empirical detection results imply something much stronger than the authors presumably anticipated (namely a highly robust and data-efficient \emph{classifier}).To illustrate, we revisit $14$ empirical detector defenses published over the past years. For $12/14$ defenses, we show that the claimed detection results imply an inefficient classifier with robustness far beyond the state-of-the-art--- thus casting some doubts on the results' validity.Finally, we show that our reduction applies in both directions: a robust classifier for attacks at distance $\epsilon/2$ implies an inefficient robust detector at distance $\epsilon$. Thus, we argue that robust classification and robust detection should be regarded as (near)-equivalent problems, if we disregard their \emph{computational} complexity.
ShiftAddNAS: Hardware-Inspired Search for More Accurate and Efficient Neural Networks
Haoran You · Baopu Li · Shi Huihong · Yonggan Fu · Yingyan Lin
Neural networks (NNs) with intensive multiplications (e.g., convolutions and transformers) are powerful yet power hungry, impeding their more extensive deployment into resource-constrained edge devices. As such, multiplication-free networks, which follow a common practice in energy-efficient hardware implementation to parameterize NNs with more efficient operators (e.g., bitwise shifts and additions), have gained growing attention. However, multiplication-free networks in general under-perform their vanilla counterparts in terms of the achieved accuracy. To this end, this work advocates hybrid NNs that consist of both powerful yet costly multiplications and efficient yet less powerful operators for marrying the best of both worlds, and proposes ShiftAddNAS, which can automatically search for more accurate and more efficient NNs. Our ShiftAddNAS highlights two enablers. Specifically, it integrates (1) the first hybrid search space that incorporates both multiplication-based and multiplication-free operators for facilitating the development of both accurate and efficient hybrid NNs; and (2) a novel weight sharing strategy that enables effective weight sharing among different operators that follow heterogeneous distributions (e.g., Gaussian for convolutions vs. Laplacian for add operators) and simultaneously leads to a largely reduced supernet size and much better searched networks. Extensive experiments and ablation studies on various models, datasets, and tasks consistently validate the effectiveness of ShiftAddNAS, e.g., achieving up to a +7.7% higher accuracy or a +4.9 better BLEU score as compared to state-of-the-art expert-designed and neural architecture searched NNs, while leading to up to 93% or 69% energy and latency savings, respectively. Codes and pretrained models are available at https://github.com/RICE-EIC/ShiftAddNAS.
Provably Adversarially Robust Nearest Prototype Classifiers
Václav Voráček · Matthias Hein
Nearest prototype classifiers (NPCs) assign to each input point the label of the nearest prototype with respect to a chosen distance metric. A direct advantage of NPCs is that the decisions are interpretable. Previous work could provide lower bounds on the minimal adversarial perturbation in the $\ell_p$-threat model when using the same $\ell_p$-distance for the NPCs. In this paper we provide a complete discussion on the complexity when using $\ell_p$-distances for decision and $\ell_q$-threat models for certification for $p,q \in \{1,2,\infty\}$. In particular we provide scalable algorithms for the \emph{exact} computation of the minimal adversarial perturbation when using $\ell_2$-distance and improved lower bounds in other cases. Using efficient improved lower bounds we train our \textbf{P}rovably adversarially robust \textbf{NPC} (PNPC), for MNIST which have better $\ell_2$-robustness guarantees than neural networks. Additionally, we show up to our knowledge the first certification results w.r.t. to the LPIPS perceptual metric which has been argued to be a more realistic threat model for image classification than $\ell_p$-balls. Our PNPC has on CIFAR10 higher certified robust accuracy than the empirical robust accuracy reported in \cite{laidlaw2021perceptual}. The code is available in our~\href{https://github.com/vvoracek/Provably-Adversarially-Robust-Nearest-Prototype-Classifiers}{repository}.
Certifying Out-of-Domain Generalization for Blackbox Functions
Maurice Weber · Linyi Li · Boxin Wang · Zhikuan Zhao · Bo Li · Ce Zhang
Certifying the robustness of model performance under bounded data distribution drifts has recently attracted intensive interest under the umbrella of distributional robustness. However, existing techniques either make strong assumptions on the model class and loss functions that can be certified, such as smoothness expressed via Lipschitz continuity of gradients, or require to solve complex optimization problems. As a result, the wider application of these techniques is currently limited by its scalability and flexibility --- these techniques often do not scale to large-scale datasets with modern deep neural networks or cannot handle loss functions which may be non-smooth such as the 0-1 loss. In this paper, we focus on the problem of certifying distributional robustness for blackbox models and bounded loss functions, and propose a novel certification framework based on the Hellinger distance. Our certification technique scales to ImageNet-scale datasets, complex models, and a diverse set of loss functions. We then focus on one specific application enabled by such scalability and flexibility, i.e., certifying out-of-domain generalization for large neural networks and loss functions such as accuracy and AUC. We experimentally validate our certification method on a number of datasets, ranging from ImageNet, where we provide the first non-vacuous certified out-of-domain generalization, to smaller classification tasks where we are able to compare with the state-of-the-art and show that our method performs considerably better.
Intriguing Properties of Input-Dependent Randomized Smoothing
Peter Súkeník · Aleksei Kuvshinov · Stephan Günnemann
Randomized smoothing is currently considered the state-of-the-art method to obtain certifiably robust classifiers. Despite its remarkable performance, the method is associated with various serious problems such as ``certified accuracy waterfalls'', certification vs.\ accuracy trade-off, or even fairness issues. Input-dependent smoothing approaches have been proposed with intention of overcoming these flaws. However, we demonstrate that these methods lack formal guarantees and so the resulting certificates are not justified. We show that in general, the input-dependent smoothing suffers from the curse of dimensionality, forcing the variance function to have low semi-elasticity. On the other hand, we provide a theoretical and practical framework that enables the usage of input-dependent smoothing even in the presence of the curse of dimensionality, under strict restrictions. We present one concrete design of the smoothing variance function and test it on CIFAR10 and MNIST. Our design mitigates some of the problems of classical smoothing and is formally underlined, yet further improvement of the design is still necessary.
To Smooth or Not? When Label Smoothing Meets Noisy Labels
Jiaheng Wei · Hangyu Liu · Tongliang Liu · Gang Niu · Masashi Sugiyama · Yang Liu
Label smoothing (LS) is an arising learning paradigm that uses the positively weighted average of both the hard training labels and uniformly distributed soft labels. It was shown that LS serves as a regularizer for training data with hard labels and therefore improves the generalization of the model. Later it was reported LS even helps with improving robustness when learning with noisy labels. However, we observed that the advantage of LS vanishes when we operate in a high label noise regime. Intuitively speaking, this is due to the increased entropy of P(noisy label|X) when the noise rate is high, in which case, further applying LS tends to “over-smooth” the estimated posterior. We proceeded to discover that several learning-with-noisy-labels solutions in the literature instead relate more closely to negative/not label smoothing (NLS), which acts counter to LS and defines as using a negative weight to combine the hard and soft labels! We provide understandings for the properties of LS and NLS when learning with noisy labels. Among other established properties, we theoretically show NLS is considered more beneficial when the label noise rates are high. We provide extensive experimental results on multiple benchmarks to support our findings too. Code is publicly available at https://github.com/UCSC-REAL/negative-label-smoothing.
Evaluating the Adversarial Robustness of Adaptive Test-time Defenses
Francesco Croce · Sven Gowal · Thomas Brunner · Evan Shelhamer · Matthias Hein · Taylan Cemgil
Adaptive defenses, which optimize at test time, promise to improve adversarial robustness. We categorize such adaptive test-time defenses, explain their potential benefits and drawbacks, and evaluate a representative variety of the latest adaptive defenses for image classification. Unfortunately, none significantly improve upon static defenses when subjected to our careful case study evaluation. Some even weaken the underlying static model while simultaneously increasing inference computation. While these results are disappointing, we still believe that adaptive test-time defenses are a promising avenue of research and, as such, we provide recommendations for their thorough evaluation. We extend the checklist of Carlini et al. (2019) by providing concrete steps specific to adaptive defenses.
On the Generalization Analysis of Adversarial Learning
Waleed Mustafa · Yunwen Lei · Marius Kloft
Many recent studies have highlighted the susceptibility of virtually all machine-learning models to adversarial attacks. Adversarial attacks are imperceptible changes to an input example of a given prediction model. Such changes are carefully designed to alter the otherwise correct prediction of the model. In this paper, we study the generalization properties of adversarial learning. In particular, we derive high-probability generalization bounds on the adversarial risk in terms of the empirical adversarial risk, the complexity of the function class and the adversarial noise set. Our bounds are generally applicable to many models, losses, and adversaries. We showcase its applicability by deriving adversarial generalization bounds for the multi-class classification setting and various prediction models (including linear models and Deep Neural Networks). We also derive optimistic adversarial generalization bounds for the case of smooth losses. These are the first fast-rate bounds valid for adversarial deep learning to the best of our knowledge.
Demystifying the Adversarial Robustness of Random Transformation Defenses
Chawin Sitawarin · Zachary Golan-Strieb · David Wagner
Neural networks’ lack of robustness against attacks raises concerns in security-sensitive settings such as autonomous vehicles. While many countermeasures may look promising, only a few withstand rigorous evaluation. Defenses using random transformations (RT) have shown impressive results, particularly BaRT (Raff et al., 2019) on ImageNet. However, this type of defense has not been rigorously evaluated, leaving its robustness properties poorly understood. Their stochastic properties make evaluation more challenging and render many proposed attacks on deterministic models inapplicable. First, we show that the BPDA attack (Athalye et al., 2018a) used in BaRT’s evaluation is ineffective and likely overestimates its robustness. We then attempt to construct the strongest possible RT defense through the informed selection of transformations and Bayesian optimization for tuning their parameters. Furthermore, we create the strongest possible attack to evaluate our RT defense. Our new attack vastly outperforms the baseline, reducing the accuracy by 83% compared to the 19% reduction by the commonly used EoT attack ($4.3\times$ improvement). Our result indicates that the RT defense on the Imagenette dataset (a ten-class subset of ImageNet) is not robust against adversarial examples. Extending the study further, we use our new attack to adversarially train RT defense (called AdvRT), resulting in a large robustness gain. Code is available at https://github.com/wagnergroup/demystify-random-transform.
Double Sampling Randomized Smoothing
Linyi Li · Jiawei Zhang · Tao Xie · Bo Li
Neural networks (NNs) are known to be vulnerable against adversarial perturbations, and thus there is a line of work aiming to provide robustness certification for NNs, such as randomized smoothing, which samples smoothing noises from a certain distribution to certify the robustness for a smoothed classifier. However, as previous work shows, the certified robust radius in randomized smoothing suffers from scaling to large datasets ("curse of dimensionality"). To overcome this hurdle, we propose a Double Sampling Randomized Smoothing (DSRS) framework, which exploits the sampled probability from an additional smoothing distribution to tighten the robustness certification of the previous smoothed classifier. Theoretically, under mild assumptions, we prove that DSRS can certify $\Theta(\sqrt d)$ robust radius under $\ell_2$ norm where $d$ is the input dimension, which implies that DSRS may be able to break the curse of dimensionality of randomized smoothing. We instantiate DSRS for a generalized family of Gaussian smoothing and propose an efficient and sound computing method based on customized dual optimization considering sampling error. Extensive experiments on MNIST, CIFAR-10, and ImageNet verify our theory and show that DSRS certifies larger robust radii than existing baselines consistently under different settings. Code is available at https://github.com/llylly/DSRS.
TPC: Transformation-Specific Smoothing for Point Cloud Models
Wenda Chu · Linyi Li · Bo Li
Point cloud models with neural network architectures have achieved great success and been widely used in safety-critical applications, such as Lidar-based recognition systems in autonomous vehicles. However, such models are shown vulnerable against adversarial attacks which aim to apply stealthy semantic transformations such as rotation and tapering to mislead model predictions. In this paper, we propose a transformation-specific smoothing framework TPC, which provides tight and scalable robustness guarantees for point cloud models against semantic transformation attacks. We first categorize common 3D transformations into two categories: composable (e.g., rotation) and indirectly composable (e.g., tapering), and we present generic robustness certification strategies for both categories. We then specify unique certification protocols for a range of specific semantic transformations and derive strong robustness guarantees. Extensive experiments on several common 3D transformations show that TPC significantly outperforms the state of the art. For example, our framework boosts the certified accuracy against twisting transformation along z-axis (within ±20°) from 20.3% to 83.8%. Codes and models are available at https://github.com/Qianhewu/Point-Cloud-Smoothing.