firstbacksecondback
202 Results
Spotlight
|
Wed 10:45 |
Easy Variational Inference for Categorical Models via an Independent Binary Approximation Michael Wojnowicz · Shuchin Aeron · Eric Miller · Michael Hughes |
|
Poster
|
Wed 15:30 |
Variational Inference with Locally Enhanced Bounds for Hierarchical Models Tomas Geffner · Justin Domke |
|
Spotlight
|
Wed 8:35 |
Variational Inference with Locally Enhanced Bounds for Hierarchical Models Tomas Geffner · Justin Domke |
|
Poster
|
Wed 15:30 |
Bayesian Deep Embedding Topic Meta-Learner Zhibin Duan · Yishi Xu · Jianqiao Sun · Bo Chen · Wenchao Chen · CHAOJIE WANG · Mingyuan Zhou |
|
Spotlight
|
Wed 11:35 |
Bayesian Deep Embedding Topic Meta-Learner Zhibin Duan · Yishi Xu · Jianqiao Sun · Bo Chen · Wenchao Chen · CHAOJIE WANG · Mingyuan Zhou |
|
Oral Session
|
Wed 10:15 |
PM: Bayesian Models and Methods |
|
Spotlight
|
Wed 10:35 |
Approximate Bayesian Computation with Domain Expert in the Loop Ayush Bharti · Louis Filstroff · Samuel Kaski |
|
Spotlight
|
Tue 14:10 |
Principal Component Flows Edmond Cunningham · Adam Cobb · Susmit Jha |
|
Poster
|
Wed 15:30 |
Bayesian Learning with Information Gain Provably Bounds Risk for a Robust Adversarial Defense Bao Gia Doan · Ehsan Abbasnejad · Javen Qinfeng Shi · Damith Ranashinghe |
|
Poster
|
Wed 15:30 |
Contrastive Mixture of Posteriors for Counterfactual Inference, Data Integration and Fairness Adam Foster · Arpi Vezer · Craig Glastonbury · Páidí Creed · Sam Abujudeh · Aaron Sim |
|
Poster
|
Wed 15:30 |
Approximate Bayesian Computation with Domain Expert in the Loop Ayush Bharti · Louis Filstroff · Samuel Kaski |
|
Poster
|
Thu 15:00 |
Calibrated and Sharp Uncertainties in Deep Learning via Density Estimation Volodymyr Kuleshov · Shachi Deshpande |