Skip to yearly menu bar Skip to main content


Continuous-Time Analysis of Accelerated Gradient Methods via Conservation Laws in Dilated Coordinate Systems

Jaewook Suh · Gyumin Roh · Ernest Ryu

Hall E #632

Keywords: [ OPT: First-order ] [ OPT: Convex ]

Abstract: We analyze continuous-time models of accelerated gradient methods through deriving conservation laws in dilated coordinate systems. Namely, instead of analyzing the dynamics of $X(t)$, we analyze the dynamics of $W(t)=t^\alpha(X(t)-X_c)$ for some $\alpha$ and $X_c$ and derive a conserved quantity, analogous to physical energy, in this dilated coordinate system. Through this methodology, we recover many known continuous-time analyses in a streamlined manner and obtain novel continuous-time analyses for OGM-G, an acceleration mechanism for efficiently reducing gradient magnitude that is distinct from that of Nesterov. Finally, we show that a semi-second-order symplectic Euler discretization in the dilated coordinate system leads to an $\mathcal{O}(1/k^2)$ rate on the standard setup of smooth convex minimization, without any further assumptions such as infinite differentiability.

Chat is not available.