Skip to yearly menu bar Skip to main content


Poster

Directed Acyclic Transformer for Non-Autoregressive Machine Translation

Fei Huang · Hao Zhou · Yang Liu · Hang Li · Minlie Huang

Hall E #126

Keywords: [ APP: Language, Speech and Dialog ]


Abstract:

Non-autoregressive Transformers (NATs) significantly reduce the decoding latency by generating all tokens in parallel. However, such independent predictions prevent NATs from capturing the dependencies between the tokens for generating multiple possible translations. In this paper, we propose Directed Acyclic Transfomer (DA-Transformer), which represents the hidden states in a Directed Acyclic Graph (DAG), where each path of the DAG corresponds to a specific translation. The whole DAG simultaneously captures multiple translations and facilitates fast predictions in a non-autoregressive fashion. Experiments on the raw training data of WMT benchmark show that DA-Transformer substantially outperforms previous NATs by about 3 BLEU on average, which is the first NAT model that achieves competitive results with autoregressive Transformers without relying on knowledge distillation.

Chat is not available.