Skip to yearly menu bar Skip to main content


Understanding Doubly Stochastic Clustering

Tianjiao Ding · Derek Lim · Rene Vidal · Benjamin Haeffele

Hall E #619

Keywords: [ MISC: Unsupervised and Semi-supervised Learning ]


The problem of projecting a matrix onto the space of \emph{doubly stochastic} matrices finds several applications in machine learning. For example, in spectral clustering, it has been shown that forming the normalized Laplacian matrix from a data affinity matrix has close connections to projecting it onto the set of doubly stochastic matrices. However, the analysis of why this projection improves clustering has been limited. In this paper we present theoretical conditions on the given affinity matrix under which its doubly stochastic projection is an ideal affinity matrix (i.e., it has no false connections between clusters, and is well-connected within each cluster). In particular, we show that a necessary and sufficient condition for a projected affinity matrix to be ideal reduces to a set of conditions on the input affinity that decompose along each cluster. Further, in the \emph{subspace clustering} problem, where each cluster is defined by a linear subspace, we provide geometric conditions on the underlying subspaces which guarantee correct clustering via a continuous version of the problem. This allows us to explain theoretically the remarkable performance of a recently proposed doubly stochastic subspace clustering method.

Chat is not available.