Skip to yearly menu bar Skip to main content


Poster

Active Multi-Task Representation Learning

Yifang Chen · Kevin Jamieson · Simon Du

Hall E #1220

Keywords: [ T: Active Learning and Interactive Learning ]


Abstract:

To leverage the power of big data from source domains and overcome the scarcity of target domain samples, representation learning based on multi-task pretraining has become a standard approach in many applications. However, large-scale pretraining is often computationally expensive and not affordable for small organizations. When there is only one target task, most source tasks can be irrelevant, and we can actively sample a subset of source data from the most To leverage the power of big data from source tasks and overcome the scarcity of the target task samples, representation learning based on multi-task pretraining has become a standard approach in many applications. However, up until now, choosing which source tasks to include in the multi-task learning has been more art than science. In this paper, we give the first formal study on resource task sampling by leveraging the techniques from active learning. We propose an algorithm that iteratively estimates the relevance of each source task to the target task and samples from each source task based on the estimated relevance. Theoretically, we show that for the linear representation class, to achieve the same error rate, our algorithm can save up to a textit{number of source tasks} factor in the source task sample complexity, compared with the naive uniform sampling from all source tasks. We also provide experiments on real-world computer vision datasets to illustrate the effectiveness of our proposed method on both linear and convolutional neural network representation classes. We believe our paper serves as an important initial step to bring techniques from active learning to representation learning.

Chat is not available.