Skip to yearly menu bar Skip to main content


Hierarchical Shrinkage: Improving the accuracy and interpretability of tree-based models.

Abhineet Agarwal · Yan Shuo Tan · Omer Ronen · Chandan Singh · Bin Yu

Room 310


Decision trees and random forests (RF) are a cornerstone of modern machine learning practice. Due to their tendency to overfit, trees are typically regularized by a variety of techniques that modify their structure (e.g. pruning). We introduce Hierarchical Shrinkage (HS), a post-hoc algorithm which regularizes the tree not by altering its structure, but by shrinking the prediction over each leaf toward the sample means over each of its ancestors, with weights depending on a single regularization parameter and the number of samples in each ancestor. Since HS is a post-hoc method, it is extremely fast, compatible with any tree-growing algorithm and can be used synergistically with other regularization techniques. Extensive experiments over a wide variety of real-world datasets show that HS substantially increases the predictive performance of decision trees even when used in conjunction with other regularization techniques. Moreover, we find that applying HS to individual trees in a RF often improves its accuracy and interpretability by simplifying and stabilizing decision boundaries and SHAP values. We further explain HS by showing that it to be equivalent to ridge regression on a basis that is constructed of decision stumps associated to the internal nodes of a tree. All code and models are released in a full-fledged package available on Github

Chat is not available.