
Hierarchical Shrinkage: Improving
the Accuracy and Interpretability

of Tree-based Methods

Omer
Ronen

Yan Shuo
Tan

Chandan
Singh

Abhineet
Agarwal

Bin Yu

Decision tree algorithms
comprise two steps

Step 1: Grow the tree
X1> a

X2 > b

Decision tree algorithms
comprise two steps

Step 1: Grow the tree

Step 2: Impute node values using
the mean response of the training
data within each node

X1> a

X2 > b

Decision tree algorithms
comprise two steps

Step 1: Grow the tree

Step 2: Impute node values using
the mean response of the training
data within each node

X1> a

X2 > b

Different algorithms vary in this step

How to grow the tree: two strategies

Greedy algorithms
(using local criterion)

● Most popular: CART [Breiman,
Friedman, Olshen, Stone (1984)]

● Many others: C4.5 [Quinlan (1993)],
ID3 [Quinlan (1986)], GUIDE [Loh

(2009)],...

Global optimization
(of a loss function on space of trees)

● Dynamic programming: GOSDT
[Lin, Hu, Rudin, Seltzer (2020)],...

● Mixed integer optimization:
[Bertsimas, Dunn (2017)],...

Fundamental problem:
Trees can easily overfit to the training data

N = 100

N = 50

X1> a

N = 50
X2 > b

N = 20 N = 30

X2 > b

N = 5 N = 15

Leaf size decreases

Bias decreases ☺
Sample size decreases

Variance increases ☹

N = 100

N = 50

X1> a

N = 50
X2 > b

N = 20 N = 30

X2 > b

N = 5 N = 15

Fundamental problem:
Trees can easily overfit to the training data

Leaf size decreases

Bias decreases ☺
Sample size decreases

Variance increases ☹

Current methods for preventing overfitting

Greedy algorithms

● Use early stopping condition
● Prune the tree after growing

Global optimization

● Add a complexity penalty term to
the loss function

All methods regularize
the tree structure (step 1)

X1> a

X2 > b

Current methods for preventing overfitting

Greedy algorithms

● Use early stopping condition
● Prune the tree after growing

Global optimization

● Add a complexity penalty term to
the loss function

All methods regularize
the tree structure (step 1)

We propose regularizing
the tree values (step 2)

X1> a

X2 > b

Current methods for preventing overfitting

Greedy algorithms

● Use early stopping condition
● Prune the tree after growing

Global optimization

● Add a complexity penalty term to
the loss function

All methods regularize
the tree structure (step 1)

We propose regularizing
the tree values (step 2)

X1> a

X2 > b

Introducing: Hierarchical Shrinkage (HS)
Shrink the value of each node to those of its ancestors

X2 > b

After
shrinkage X1> aX1> a

X2 > b
N = 30

N = 5 N = 15

Before
shrinkage

N = 20

N = 50

Introducing: Hierarchical Shrinkage (HS)
Shrink the value of each node to those of its ancestors

X2 > b

After
shrinkage X1> a

New value for leftmost leaf
= 0.80 ⨉

X1> a

X2 > b
N = 30

N = 5 N = 15

Before
shrinkage

N = 20

N = 50

Introducing: Hierarchical Shrinkage (HS)
Shrink the value of each node to those of its ancestors

X2 > b

After
shrinkage

New value for leftmost leaf
= 0.80 ⨉ + 0.11 ⨉

X1> aX1> a

X2 > b
N = 30

N = 5 N = 15

Before
shrinkage

N = 20

N = 50

Introducing: Hierarchical Shrinkage (HS)
Shrink the value of each node to those of its ancestors

X2 > b

After
shrinkage

New value for leftmost leaf
= 0.80 ⨉ + 0.11 ⨉ + 0.09 ⨉

X1> aX1> a

X2 > b
N = 30

N = 5 N = 15

Before
shrinkage

N = 20

N = 50

Introducing: Hierarchical Shrinkage (HS)
Shrink the value of each node to those of its ancestors

X2 > b

After
shrinkage X1> aX1> a

X2 > b
N = 30

N = 5 N = 15

Before
shrinkage

N = 20

N = 50

New value for leftmost leaf
= 0.80 ⨉ + 0.11 ⨉ + 0.09 ⨉

Effect on toy examples

How are weights determined? New value for leftmost leaf
= 0.80 ⨉ + 0.11 ⨉ + 0.09 ⨉

How are weights determined?

X1> a

X2 > b
N = 30

N = 5 N = 15

Before
shrinkage

N = 20

N = 50

Old prediction

New value for leftmost leaf
= 0.80 ⨉ + 0.11 ⨉ + 0.09 ⨉

How are weights determined?

X1> a

X2 > b
N = 30

N = 5 N = 15

Before
shrinkage

N = 20

N = 50

Old prediction
= +

New value for leftmost leaf
= 0.80 ⨉ + 0.11 ⨉ + 0.09 ⨉

How are weights determined?

X1> a

X2 > b
N = 30

N = 5 N = 15

Before
shrinkage

N = 20

N = 50

Old prediction
= + (-) +

New value for leftmost leaf
= 0.80 ⨉ + 0.11 ⨉ + 0.09 ⨉

How are weights determined?

X1> a

X2 > b
N = 30

N = 5 N = 15

Before
shrinkage

N = 20

N = 50

Old prediction
= + (-) + (-)

New value for leftmost leaf
= 0.80 ⨉ + 0.11 ⨉ + 0.09 ⨉

How are weights determined?

X1> a

X2 > b
N = 30

N = 5 N = 15

Before
shrinkage

N = 20

Old prediction
= + (-) + (-)

New prediction under HS
= + (-) + (-)

N = 50

New value for leftmost leaf
= 0.80 ⨉ + 0.11 ⨉ + 0.09 ⨉

How are weights determined?

X1> a

X2 > b
N = 30

N = 5 N = 15

Before
shrinkage

N = 20

N = 50

Old prediction
= + (-) + (-)

New prediction under HS
= + (-) + (-)

1 + λ/50

New value for leftmost leaf
= 0.80 ⨉ + 0.11 ⨉ + 0.09 ⨉

How are weights determined?

X1> a

X2 > b
N = 30

N = 5 N = 15

Before
shrinkage

N = 20

N = 50

Old prediction
= + (-) + (-)

New prediction under HS
= + (-) + (-)

1 + λ/50 1 + λ/20

New value for leftmost leaf
= 0.80 ⨉ + 0.11 ⨉ + 0.09 ⨉

How are weights determined?

X1> a

X2 > b
N = 30

N = 5 N = 15

Before
shrinkage

N = 20

N = 50

Old prediction
= + (-) + (-)

New prediction under HS
= + (-) + (-)

1 + λ/50 1 + λ/20

λ = hyperparameter to be tuned

Under the hood:
Connection to ridge regression

New value for leftmost leaf
= 0.80 ⨉ + 0.11 ⨉ + 0.09 ⨉

Because HS is applied after decision tree is grown…

● Can be applied to any decision tree model

● Extremely fast and efficient

○ Does not need to refit the tree

○ Does not require access to training sample, only node values + sample sizes

○ Can be tuned using efficient leave-one-out-CV

● Can be used simultaneously with pruning or other types of regularization

● Can be applied to decision trees in an ensemble

Simulation*: Effect of HS at different no. of leaves

*with a sparse linear generative model

Simulation*: Effect of HS at different no. of leaves

*with a sparse linear generative model

Simulation*: Effect of HS at different no. of leaves

*with a sparse linear generative model

Simulation*: Effect of HS at different no. of leaves

*with a sparse linear generative model

Results on real-world datasets

HS improves prediction accuracy of decision trees

Hierarchical shrinkage

1. Improves prediction accuracy (r2) on regression datasets

2. Improves prediction accuracy (AUROC) on classification datasets

3. Performs better than alternate shrinkage schemes

4. Improves prediction accuracy of random forests

1. Regression results: r2 vs no. of leaves

No. of leaves

Q. How much HS improve prediction accuracy for trees as we
vary the level of model complexity?

For each dataset

● Apply HS to trees grown using CART and CART with
cost-complexity pruning (CCP)

● Vary no. of leaves in each model via changing the
stopping/pruning condition

hsCART (CCP)

hsCART

1. Regression results: r2 vs no. of leaves

No. of leaves

CART

CART with cost-complexity
pruning (CCP)

hsCART (CCP)

hsCART

1. Regression results: r2 vs no. of leaves

No. of leaves

CART

CART with cost-complexity
pruning (CCP)● HS improves both tree

models
● Performance gap is larger

for deeper trees

Performance gap is larger
for smaller datasets

Sample size n

2. Classification results: AUROC vs no. of leaves

2. Classification results: AUROC vs no. of leaves

2. Classification results: AUROC vs no. of leaves

● HS improves both tree models
● Performance gap is larger for deeper trees
● Performance gap is larger for smaller datasets

X2 > b

LBS X1> a

New prediction for leftmost leaf
= 0.80 ⨉ + 0.20 ⨉

3. An alternate shrinkage scheme: Leaf-based shrinkage

X2 > b

HS X1> a

New prediction for leftmost leaf
= 0.80 ⨉ + 0.11 ⨉ + 0.09 ⨉

Used implicitly in XGBoost
and Bayesian Additive
Regression Trees (BART)

3. Hierarchical shrinkage vs. Leaf-based shrinkage

No. of leaves

AUROC

3. Hierarchical shrinkage vs. Leaf-based shrinkage

No. of leaves

AUROC LBS

HS

CART

3. Hierarchical shrinkage vs. Leaf-based shrinkage

3. Hierarchical shrinkage vs. Leaf-based shrinkage

4. Applying HS to random forest (hsRF)

● HS can be applied to individual trees in an RF to regularize it

● How are RFs regularized?

○ Trees in RF typically not regularized

○ Breiman’s insight: Randomness in RF acts as implicit regularization

● However, we show that HS improves RF performance significantly

4. Applying HS to random forest (hsRF)

We compare (classification) performance of hsRF to

● Vanilla RF (default hyperparameters from scikit-learn)
● RF regularized via choosing depth by CV
● RF regularized via choosing max_features / m_try

(number of subsetted features per tree) by CV
● Bayesian Additive Regression Trees (BART)

For all methods (except BART), we plot how accuracy changes
as we vary the no. of trees

4. Applying HS to random forest (hsRF)

vanilla RF
hsRF

depth
max_features
BART

4. Applying HS to random forest (hsRF)

vanilla RF
hsRF

depth
max_features
BART

● hsRF performs better than other regularization schemes
● hsRF reaches peak performance with very few trees: Can

compress models

4. Applying HS to random forest (hsRF)

4. Applying HS to random forest (hsRF)

4. Applying HS to random forest (hsRF)

● hsRF doesn’t need to refit the RF when performing CV:
faster than other methods

● Performance gap still appears at 500 trees

Summary of results (prediction accuracy)

Hierarchical shrinkage

1. Improves prediction accuracy (r2) on regression datasets

2. Improves prediction accuracy (AUROC) on classification datasets

3. Performs better than alternate shrinkage schemes

4. Improves prediction accuracy of random forests

HS improves interpretability of random forest (RF)

Hierarchical shrinkage

1. Simplifies decision boundaries

2. Makes SHAP values more clustered

3. Makes SHAP values more stable to dataset resampling

2. Refresher on SHAP [Lundberg, Lee (2017)]

● SHAP is a local feature importance score

● Usually summarized in a SHAP plot

SHAP plot for
breast-cancer dataset

2. Refresher on SHAP [Lundberg, Lee (2017)]

● SHAP is a local feature importance score

● Usually summarized in a SHAP plot

SHAP plot for
breast-cancer dataset

Feature name

SHAP value for
one sample

2. HS makes SHAP values more clustered

2. HS makes SHAP values more clustered

 HS

2. HS makes SHAP values more clustered

 HS

2. HS makes SHAP values more clustered

How to interpret this?
● If SHAP values are clustered, then feature acts in a

similar way for all examples in cluster
● I.e. the feature does not interact with other features
● HS regularizes spurious interactions in the model

Conclusion

● Hierarchical shrinkage regularizes decision trees by shrinking the value of
each node to those of its ancestors

● Is extremely fast and can be applied to any decision tree model or tree
ensemble

● Improves prediction accuracy for decision tree and random forest models

● Improves interpretability of random forest models

