Poster
in
Workshop: AI for Science
GAUCHE: A Library for Gaussian Processes in Chemistry
Ryan-Rhys Griffiths · Leo Klarner · Henry Moss · Aditya Ravuri · Sang Truong · Yuanqi Du · Arian Jamasb · Julius Schwartz · Austin Tripp · Bojana Ranković · Philippe Schwaller · Gregory Kell · Anthony Bourached · Alexander Chan · Jacob Moss · Chengzhi Guo · Alpha Lee · Jian Tang
We introduce GAUCHE, a library for GAUssian processes in CHEmistry. Gaussian processes have long been a cornerstone of probabilistic machine learning, affording particular advantages for uncertainty quantification and Bayesian optimisation. Extending Gaussian processes to chemical representations however is nontrivial, necessitating kernels defined over structured inputs such as graphs, strings and bit vectors. By defining such kernels in GAUCHE, we seek to open the door to powerful tools for uncertainty quantification and Bayesian optimisation in chemistry. Motivated by scenarios frequently encountered in experimental chemistry, we showcase applications for GAUCHE in molecule discovery, chemical reaction optimisation and protein engineering.