Skip to yearly menu bar Skip to main content


Poster
in
Workshop: AI for Science

From Kepler to Newton: Explainable AI for Science Discovery

Zelong Li · jianchao ji · Yongfeng Zhang


Abstract:

The Observation--Hypothesis--Prediction--Experimentation loop paradigm for scientific research has been practiced by researchers for years towards scientific discoveries. However, with data explosion in both mega-scale and milli-scale scientific research, it has been sometimes very difficult to manually analyze the data and propose new hypothesis to drive the cycle for scientific discovery.In this paper, we discuss the role of Explainable AI in scientific discovery process by demonstrating an Explainable AI-based paradigm for science discovery. The key is to use Explainable AI to help derive data or model interpretations as well as scientific discoveries or insights. We show how computational and data-intensive methodology -- together with experimental and theoretical methodology -- can be seamlessly integrated for scientific research. To demonstrate the AI-based science discovery process, and to pay our respect to some of the greatest minds in human history, we show how Kepler's laws of planetary motion and the Newton's law of universal gravitation can be rediscovered by (Explainable) AI based on Tycho Brahe's astronomical observation data, whose works were leading the scientific revolution in the 16-17th century. This work also highlights the important role of Explainable AI (as compared to Blackbox AI) in science discovery to help humans prevent or better prepare for the possible technological singularity that may happen in the future.

Chat is not available.