Skip to yearly menu bar Skip to main content


Session

Probabilistic Methods 2

Moderator: Matthias W Seeger

Abstract:
Chat is not available.

Thu 22 July 5:00 - 5:20 PDT

Oral
Differentiable Particle Filtering via Entropy-Regularized Optimal Transport

Adrien Corenflos · James Thornton · George Deligiannidis · Arnaud Doucet

Particle Filtering (PF) methods are an established class of procedures for performing inference in non-linear state-space models. Resampling is a key ingredient of PF necessary to obtain low variance likelihood and states estimates. However, traditional resampling methods result in PF-based loss functions being non-differentiable with respect to model and PF parameters. In a variational inference context, resampling also yields high variance gradient estimates of the PF-based evidence lower bound. By leveraging optimal transport ideas, we introduce a principled differentiable particle filter and provide convergence results. We demonstrate this novel method on a variety of applications.

Thu 22 July 5:20 - 5:25 PDT

Spotlight
DAGs with No Curl: An Efficient DAG Structure Learning Approach

Yue Yu · Tian Gao · Naiyu Yin · Qiang Ji

Recently directed acyclic graph (DAG) structure learning is formulated as a constrained continuous optimization problem with continuous acyclicity constraints and was solved iteratively through subproblem optimization. To further improve efficiency, we propose a novel learning framework to model and learn the weighted adjacency matrices in the DAG space directly. Specifically, we first show that the set of weighted adjacency matrices of DAGs are equivalent to the set of weighted gradients of graph potential functions, and one may perform structure learning by searching in this equivalent set of DAGs. To instantiate this idea, we propose a new algorithm, DAG-NoCurl, which solves the optimization problem efficiently with a two-step procedure: $1)$ first we find an initial non-acyclic solution to the optimization problem, and $2)$ then we employ the Hodge decomposition of graphs and learn an acyclic graph by projecting the non-acyclic graph to the gradient of a potential function. Experimental studies on benchmark datasets demonstrate that our method provides comparable accuracy but better efficiency than baseline DAG structure learning methods on both linear and generalized structural equation models, often by more than one order of magnitude.

Thu 22 July 5:25 - 5:30 PDT

Spotlight
Generalized Doubly Reparameterized Gradient Estimators

Matthias Bauer · Andriy Mnih

Efficient low-variance gradient estimation enabled by the reparameterization trick (RT) has been essential to the success of variational autoencoders. Doubly-reparameterized gradients (DReGs) improve on the RT for multi-sample variational bounds by applying reparameterization a second time for an additional reduction in variance. Here, we develop two generalizations of the DReGs estimator and show that they can be used to train conditional and hierarchical VAEs on image modelling tasks more effectively. We first extend the estimator to hierarchical models with several stochastic layers by showing how to treat additional score function terms due to the hierarchical variational posterior. We then generalize DReGs to score functions of arbitrary distributions instead of just those of the sampling distribution, which makes the estimator applicable to the parameters of the prior in addition to those of the posterior.

Thu 22 July 5:30 - 5:35 PDT

Spotlight
Whittle Networks: A Deep Likelihood Model for Time Series

Zhongjie Yu · Fabrizio Ventola · Kristian Kersting

hile probabilistic circuits have been extensively explored for tabular data, less attention has been paid to time series. Here, the goal is to estimate joint densities among the entire time series and, in turn, determining, for instance, conditional independence relations between them. To this end, we propose the first probabilistic circuits (PCs) approach for modeling the joint distribution of multivariate time series, called Whittle sum-product networks (WSPNs). WSPNs leverage the Whittle approximation, casting the likelihood in the frequency domain, and place a complex-valued sum-product network, the most prominent PC, over the frequencies. The conditional independence relations among the time series can then be determined efficiently in the spectral domain. Moreover, WSPNs can naturally be placed into the deep neural learning stack for time series, resulting in Whittle Networks, opening the likelihood toolbox for training deep neural models and inspecting their behaviour. Our experiments show that Whittle Networks can indeed capture complex dependencies between time series and provide a useful measure of uncertainty for neural networks.

Thu 22 July 5:35 - 5:40 PDT

Spotlight
On the Convergence of Hamiltonian Monte Carlo with Stochastic Gradients

Difan Zou · Quanquan Gu

Hamiltonian Monte Carlo (HMC), built based on the Hamilton's equation, has been witnessed great success in sampling from high-dimensional posterior distributions. However, it also suffers from computational inefficiency, especially for large training datasets. One common idea to overcome this computational bottleneck is using stochastic gradients, which only queries a mini-batch of training data in each iteration. However, unlike the extensive studies on the convergence analysis of HMC using full gradients, few works focus on establishing the convergence guarantees of stochastic gradient HMC algorithms. In this paper, we propose a general framework for proving the convergence rate of HMC with stochastic gradient estimators, for sampling from strongly log-concave and log-smooth target distributions. We show that the convergence to the target distribution in $2$-Wasserstein distance can be guaranteed as long as the stochastic gradient estimator is unbiased and its variance is upper bounded along the algorithm trajectory. We further apply the proposed framework to analyze the convergence rates of HMC with four standard stochastic gradient estimators: mini-batch stochastic gradient (SG), stochastic variance reduced gradient (SVRG), stochastic average gradient (SAGA), and control variate gradient (CVG). Theoretical results explain the inefficiency of mini-batch SG, and suggest that SVRG and SAGA perform better in the tasks with high-precision requirements, while CVG performs better for large dataset. Experiment results verify our theoretical findings.

Thu 22 July 5:40 - 5:45 PDT

Spotlight
Addressing Catastrophic Forgetting in Few-Shot Problems

Pauching Yap · Hippolyt Ritter · David Barber

Neural networks are known to suffer from catastrophic forgetting when trained on sequential datasets. While there have been numerous attempts to solve this problem in large-scale supervised classification, little has been done to overcome catastrophic forgetting in few-shot classification problems. We demonstrate that the popular gradient-based model-agnostic meta-learning algorithm (MAML) indeed suffers from catastrophic forgetting and introduce a Bayesian online meta-learning framework that tackles this problem. Our framework utilises Bayesian online learning and meta-learning along with Laplace approximation and variational inference to overcome catastrophic forgetting in few-shot classification problems. The experimental evaluations demonstrate that our framework can effectively achieve this goal in comparison with various baselines. As an additional utility, we also demonstrate empirically that our framework is capable of meta-learning on sequentially arriving few-shot tasks from a stationary task distribution.

Thu 22 July 5:45 - 5:50 PDT

Spotlight
Bayesian Algorithm Execution: Estimating Computable Properties of Black-box Functions Using Mutual Information

Willie Neiswanger · Ke Alexander Wang · Stefano Ermon

In many real world problems, we want to infer some property of an expensive black-box function f, given a budget of T function evaluations. One example is budget constrained global optimization of f, for which Bayesian optimization is a popular method. Other properties of interest include local optima, level sets, integrals, or graph-structured information induced by f. Often, we can find an algorithm A to compute the desired property, but it may require far more than T queries to execute. Given such an A, and a prior distribution over f, we refer to the problem of inferring the output of A using T evaluations as Bayesian Algorithm Execution (BAX). To tackle this problem, we present a procedure, InfoBAX, that sequentially chooses queries that maximize mutual information with respect to the algorithm's output. Applying this to Dijkstra’s algorithm, for instance, we infer shortest paths in synthetic and real-world graphs with black-box edge costs. Using evolution strategies, we yield variants of Bayesian optimization that target local, rather than global, optima. On these problems, InfoBAX uses up to 500 times fewer queries to f than required by the original algorithm. Our method is closely connected to other Bayesian optimal experimental design procedures such as entropy search methods and optimal sensor placement using Gaussian processes.

Thu 22 July 5:50 - 5:55 PDT

Q&A
Q&A