Skip to yearly menu bar Skip to main content


Few-shot Language Coordination by Modeling Theory of Mind

Hao Zhu · Graham Neubig · Yonatan Bisk


Keywords: [ Natural Language Processing ]


No man is an island. Humans develop the ability to communicate with a large community by coordinating with different interlocutors within short conversations. This ability is largely understudied by the research on building neural language communicative agents. We study the task of few-shot language coordination: agents quickly adapting to their conversational partners’ language abilities. Different from current communicative agents trained with self-play, we in- investigate this more general paradigm by requiring the lead agent to coordinate with a population of agents each of whom has different linguistic abilities. This leads to a general agent able to quickly adapt to communicating with unseen agents in the population. Unlike prior work, success here requires the ability to model the partner’s beliefs, a vital component of human communication. Drawing inspiration from the study of theory-of-mind (ToM; Premack & Woodruff (1978)), we study the effect of the speaker explicitly modeling the listener’s mental state. Learning by communicating with a population, the speakers, as shown in our experiments, acquire the ability to learn to predict the reactions of their partner upon various messages on-the-fly. The speaker’s predictions for the future actions help it generate the best instructions in order to maximize communicative goal with message costs. To examine our hypothesis that the instructions generated with ToM modeling yield better communication per- performance, we employ our agents in both a referential game and a language navigation task. Positive results from our experiments also hint at the importance of explicitly modeling language acquisition as a socio-pragmatic progress.

Chat is not available.