Poster
Prior Image-Constrained Reconstruction using Style-Based Generative Models
Varun A. Kelkar · Mark Anastasio
Virtual
Keywords: [ Kernel Methods ] [ Algorithms ] [ Frequentist Statistics ] [ Sparsity and Compressed Sensing ]
Obtaining a useful estimate of an object from highly incomplete imaging measurements remains a holy grail of imaging science. Deep learning methods have shown promise in learning object priors or constraints to improve the conditioning of an ill-posed imaging inverse problem. In this study, a framework for estimating an object of interest that is semantically related to a known prior image, is proposed. An optimization problem is formulated in the disentangled latent space of a style-based generative model, and semantically meaningful constraints are imposed using the disentangled latent representation of the prior image. Stable recovery from incomplete measurements with the help of a prior image is theoretically analyzed. Numerical experiments demonstrating the superior performance of our approach as compared to related methods are presented.