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Images from Incomplete Measurements

YortageGalan 37

.........

ADAS /

Image credits (L to R):

\ Medical imaging /
Canon Global

Imaging represented as a linear system g = Hf 4 noise. Povic, et al, Nat. Astronomy ‘18
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Imaging represented as a linear systemg = Hf + noise. Povic, et al, Nat. Astronory ‘18
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Images from Incomplete Measurements

YortageGalan 37
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Image credits (L to R):
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Povic, et al., Nat. Astronomy ‘18

Imaging represented as a linear systemg = Hf + noise. onomy 18
« g€ E™ :Measurements
e« fcE” : Object to-be-imaged _
« He E™" : Linear operator
(represents the physics of the problem)
Case of interest : m < nill-posed, need prior knowledge of f.
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Compressed sensing

Traditional Compressed Sensing
[Candes et al., 2008]

/ * Sparsity: fis k sparse. \
(In general, z = Of is k sparse)
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Compressed sensing

Traditional Compressed Sensing
[Candes et al., 2008]

/ * Sparsity: fis k sparse. \
(In general, z = Of is k sparse)
* His approximately isometric for k sparse signals.

(1= O)|HElZ < [IHF]I2 < (1 + 8)[| HE|3
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Compressed sensing

Traditional Compressed Sensing
[Candes et al., 2008]

/ * Sparsity: fis k sparse. \
(In general, z = Of is k sparse)
* His approximately isometric for k sparse signals.

(1= O)|HElZ < [IHF]I2 < (1 + 8)[| HE|3

* O(klog(n/k))measurements needed for recovery.
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Compressed sensing

Traditional Compressed Sensing
[Candes et al., 2008]

/ * Sparsity: fis k sparse. \
(In general, z = Of is k sparse)
H is approximately isometric for k sparse signals.

(1= O)|HElZ < [IHF]I2 < (1 + 8)[| HE|3

O(k log(n/k))measurements needed for recovery.

g=Hf

In many cases, min. {1 norm solution is also sparsest.
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Compressed sensing

Traditional Compressed Sensing Compressed sensing with Generative models
[Candes et al., 2008] [Bora et al., 2017]
/ e Sparsity: fis k sparse. \ / e fliesin the range of a generative model G. \
(In general, z = @f is k sparse) G:RFKSR" feR(G)

H is approximately isometric for k sparse signals.
(1 - 8)|[HF[I3 < || HF|I3 < (1 + 8)||HF|3

O(k log(n/k))measurements needed for recovery.

g=Hf

In many cases, min. {1 norm solution is also sparsest.
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Compressed sensing

Traditional Compressed Sensing Compressed sensing with Generative models
[Candes et al., 2008] [Bora et al., 2017]
/ e Sparsity: fis k sparse. \ / e fliesin the range of a generative model G. \
(In general, z = @f is k sparse) G:RFKSR" feR(G)
* His approximately isometric for k sparse signals. * H obeys the restricted eigenvalue condition (REC)
(1 8)||HF|3 < [[HF|3 < (1 + 8)|| HF3 |Hfy — HE|| > y|[fy — £ = 8 1,2 € R(G)

* O(klog(n/k))measurements needed for recovery.

g=Hf

* In many cases, min. {1 norm solution is also sparsest.
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Compressed sensing

Traditional Compressed Sensing
[Candes et al., 2008]

/ * Sparsity: fis k sparse. \
(In general, z = Of is k sparse)
* His approximately isometric for k sparse signals.

(1= O)|HElZ < [IHF]I2 < (1 + 8)[| HE|3

* O(klog(n/k))measurements needed for recovery.

g=Hf

* In many cases, min. {1 norm solution is also sparsest.

Compressed sensing with Generative models
(CSGM) [Bora et al., 2017]

\_ J

» fliesin the range of a generative model G.
7« fliesin th f ive model G )
G: R R" feR(G)
* H obeys the restricted eigenvalue condition (REC)
||Hf1—Hf2|| 2’}/||f1—f2|| — 9 fl,fQER(G)
* O(klog(L)) measurements needed.
L: Lipschitz constant of G
R(G) P
g=Hf
\ /
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Advances in GANs

/ StyleGAN2 \

[Karras, et al., 2020]

DCGAN Progressively Growing GAN StyleGAN
[Radford, et al., 2016] [Karras, et al., 2018] [Karras, et al., 2019]

Image source: Bora, et. Al. 2017

* Huge improvements in diversity, invertibility and controllability of GANs
* CSGM benefits from many of these.
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StyleGAN: Controlling individual semantic features

An intermediate “disentangled” latent space controls features at different scales.

-

. Ik k
Bmapping - R* - R

G : R S R” h

Stacked L copies of u Svnthesis
StyleGAN z —-[ Mapping Net ]—»u e R* > weRK Y > f
architecture R net \
u® u® oo ud
B — — —— — —
g W Y,
ZNN(O, /) f’\“pdata

Latent space

Intermediate, "disentangled”/
latent space
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StyleGAN: Controlling individual semantic features

An intermediate “disentangled” latent space controls features at different scales.

( k k G . RLk _) Rn \
8mapping : R° — R

Stacked L copies of u Svnthesis
StyleGAN z 4{ Mapping Net ]—»u e R* > weRK Y > f
architecture net
u® u® oo ud
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“mixed” latent vector ————— T
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Prior image-constrained reconstruction

* Access to a previous, related image of the object.
* Arises in monitoring perfusion, tumor progression, sequential radar imaging.

Sparse
easurements
Reconstruction
framework
£

Groupd truth
f

Estimated image

Prior image

£(P1)

 f and f(P') must be “similar” or “close” to each other.
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Prior image-constrained reconstruction

* Access to a previous, related image of the object.
* How to incorporate info from the prior image?

Sparse
easurements
Reconstruction
( framework
£

Groupd truth
f

Estimated image

Prior image

£(P1)

 f and f(P') must be “similar” or “close” to each other.
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Prior image-constrained reconstruction

Classical approach Using SyleGANs
[Chen et al., 2008] [This work]
Prior image-constrained compressed sensing (PICCS)\ Prior image-constrained recon. using generative models
: : ~ PI) - . (PICGM)
* Difference sparsity: Assume that f — £P) s sparse in
some domain. « For f and f(Pin R(G), assume that they differ by a
few styles.

e Con: Cannot capture semantic differences between

f and £(PY,
W —-E
equal equal
S s L (3
o P
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The PICGM inverse problem

W = argmin g — HG(w)[3 + b(w),

f=G(W).
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The PICGM inverse problem

\" T/ o = arg min g — HGG)3 + o(w),
w
Kept these fixed to corresponding St Wi — W(Pl) W e — W(Pl)
components of w(™! i Ll:py L:py p2:K pa:K
f=G(w).
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The PICGM inverse problem

optimize over
these

Kept these fixed to corresponding
components of w(P)

W = arg min g — HGMW)[3 + b(w),
(P1)

f=G(W).
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The PICGM inverse problem

optimize over
these

Kept these fixed to corresponding
components of w(Ph

w(PY obtained by inverting G via

min [[F7) — G(w)[3 + b(w)

\

W = arg min g — HGMW)[3 + b(w),
(PI) (PI)

S.t. W]_:pl — Wl:pll wp K pQZK'

f=G(W).

= W
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The PICGM inverse problem

~

optimize over Basgd qn a specific way to
these Gaussianized the latent space
{ [Wulff and Torralba, 2020]
w :ﬂ: v =LRels(w) € V
;Pl P2 N 2 v N(\T, Z)
\ / w =argmin ||g — HG(w)||5 +|d(W)] | L A A A A ° lo @
" ALAAI
Kept these fixed to correspondin (P1) (P1)
P Py St Wi =W ), Wpk=w,_ ., | AAALAL # = ¢
Components of W( ) | P | P2 Marginals in V Pairwise
) . f=G (VI\\I) \_ distributions in

w(PY obtained by inverting G via

min [F*) — G(w) 13 +{b(w)

\
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The PICGM inverse problem

~

optimize over Based on a specific way to
these Gaussianized the latent space
| [Wulff and Torralba, 2020]
w :;:— v =LRels(w) € V
SR Lo v~ N, I)
1 A - .
’\ /‘ W =argmin|g—HGW)[2+H®W)] | | A AL A 4 o o
w
AL A AI
Kept these fixed to corresponding S.t. Wi, = W(Pl) W, . = W(Pl) LAA AL @ = @
components of w(") L Lipr? P2 pa:K? Marginals in Pairwise
) . f — G(VI\\I) \ distributions in V )
(PI) : : : .
w' /obtained by inverting G via 4 TheoreticalGlarantees N
m“in ||f(P') — G(w)||§ +- Stable recovery up to 6 + o(d) error for in-distribution objects from
~ J Q ((p2 — p1) log(al|Z|[F)/8)

measurements.
(a = El||Jacobian(G)||r)

J
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Numerical Studies: Face image study

Setup:

* Gaussian random forward model __PLS-TV PICCS _Proposed

50x subsampling.
* |ID Gaussian noise with 20 dB SNR.
Baselines:

* PLS-TV — Penalized least-squares with TV
regularization

* CSGM — Compressed sensing using generative models

* PICCS — Prior image constrained compressed sensing

0.9
0.121 I
| T 1
0.10 | T l 0.81
% T =
= 0.08 a I
. 0.7 I 1 L
- 1
0.06 T
0.04 1 - : : 0.6 - : :
PLS-TV CSGM PICCS PICGM PLS-TV CSGM PICCS PICGM
Algorithm Algorithm
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Numerical Studies: MR image study

PICCS Proposed

Setup: GT Pl PLS-TV
e Simulated MRI measurements with 6x and =

12x Fourier undersampling

CSGM

e Complex-valued iid Gaussian noise with 20
dB SNR.

4 PLS-TV  —4- CSGM  —f-— PICCS PICGM
0.125] ~
IeSassit e RS -
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Conclusion

Developed a novel formulation of a
classical problem, that uses a prior image
in image reconstruction
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Conclusion

Developed a novel formulation of a
classical problem, that uses a prior image
in image reconstruction

Trained StyleGAN2 on MR images, with
good style-mixing properties, used it in the
inverse problem with a new regularization.
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good style-mixing properties, used it in the
inverse problem with a new regularization.

Developed theoretical guarantees in terms
of quantifiable properties of generator
network. Can be used to test robustness.
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Conclusion

Developed a novel formulation of a
classical problem, that uses a prior image
in image reconstruction

Trained StyleGAN2 on MR images, with
good style-mixing properties, used it in the
inverse problem with a new regularization.

Developed theoretical guarantees in terms
of quantifiable properties of generator
network. Can be used to test robustness.

Promising numerical results on a realistic
application: Proposed approach using
StyleGAN and latent-space constraints

outperforms classical approaches.
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Thank you!

Computational Imaging Science Lab @UIUC

D4 Varun Kelkar : vak2@Illlinois.edu
DA Mark Anastasio : maa@lllinois.edu
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Mark Agéstasio

anastasio.bioengineering.illinois.edu
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