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Images from Incomplete Measurements
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Medical imaging Astronomy

Imaging represented as a linear system               + noise. 
• : Measurements
• : Object to-be-imaged
• : Linear operator 

(represents the physics of the problem)
Case of interest :              ill-posed, need prior knowledge of f.

ADAS

Aim: Estimate f.
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• Sparsity: f is k sparse. 
(In general,              is k sparse)

• H is approximately isometric for k sparse signals.

• measurements needed for recovery.

• In many cases, min.     norm solution is also sparsest. 

• f lies in the range of a generative model    . 

• H obeys the restricted eigenvalue condition (REC)

• measurements needed. 
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Compressed sensing

Traditional Compressed Sensing
[Candes et al., 2008]

g = H f

Compressed sensing with Generative models 
(CSGM) [Bora et al., 2017]

L: Lipschitz constant of G

g = H f
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• Huge improvements in diversity, invertibility and controllability of GANs
• CSGM benefits from many of these.
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Advances in GANs

DCGAN 
[Radford, et al., 2016]

Image source: Bora, et. Al. 2017

Progressively Growing GAN 
[Karras, et al., 2018]

StyleGAN
[Karras, et al., 2019]

StyleGAN2
[Karras, et al., 2020]
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An intermediate “disentangled” latent space controls features at different scales.
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StyleGAN: Controlling individual semantic features

StyleGAN
architecture

w:

Mapping Net
Stacked L copies of u

u w
Synthesis 

net

Latent space
Intermediate, “disentangled” 

latent space
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An intermediate “disentangled” latent space controls features at different scales.
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StyleGAN: Controlling individual semantic features

“mixed” latent vector

StyleGAN
architecture

w:

Mapping Net
Stacked L copies of u

u w
Synthesis 

net
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•Access to a previous, related image of the object.

•Arises in monitoring perfusion, tumor progression, sequential radar imaging.

• and          must be “similar” or “close” to each other. 
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Prior image-constrained reconstruction

Sparse 
measurements

Prior image

Reconstruction 
framework

Estimated imageGround truth
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•Access to a previous, related image of the object.

•How to incorporate info from the prior image?

• and          must be “similar” or “close” to each other. 
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Prior image-constrained reconstruction

Sparse 
measurements

Prior image

Reconstruction 
framework

Estimated imageGround truth
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• Difference sparsity: Assume that     − is sparse in 
some domain.

• Con: Cannot capture semantic differences between                    
and         .
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Prior image-constrained reconstruction

Classical approach
[Chen et al., 2008]

Using SyleGANs
[This work]

−

Prior image-constrained compressed sensing (PICCS)

• For     and          in            , assume that they differ by a 
few styles.

Prior image-constrained recon. using generative models
(PICGM)

nGT

PI

equal equal
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The PICGM inverse problem
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The PICGM inverse problem

w

Kept these fixed to corresponding 
components of      

optimize over
these

Based on a specific way to 
Gaussianized the latent space 

[Wulff and Torralba, 2020]

obtained by inverting G via Theoretical Guarantees
Stable recovery up to                   error for in-distribution objects from

measurements.
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Setup: 

• Gaussian random forward model

50x subsampling.

• IID Gaussian noise with 20 dB SNR.

Baselines: 

• PLS-TV – Penalized least-squares with TV 
regularization

• CSGM – Compressed sensing using generative models

• PICCS – Prior image constrained compressed sensing
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Numerical Studies: Face image study

                           



Bioengineering

Setup: 

• Simulated MRI measurements with 6x and 
12x Fourier undersampling

• Complex-valued iid Gaussian noise with 20 
dB SNR.
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Numerical Studies: MR image study

                           

 
  

  
  

 
  

  
  
 

6x 12xUndersampling ratio: 
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Conclusion

Developed a novel formulation of a 
classical problem, that uses a prior image 

in image reconstruction

Trained StyleGAN2 on MR images, with 
good style-mixing properties, used it in the 
inverse problem with a new regularization. 

Developed theoretical guarantees in terms 
of quantifiable properties of generator 

network. Can be used to test robustness.

Promising numerical results on a realistic 
application: Proposed approach using 
StyleGAN and latent-space constraints 

outperforms classical approaches. 
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