Skip to yearly menu bar Skip to main content


SDDM: Score-Decomposed Diffusion Models on Manifolds for Unpaired Image-to-Image Translation

Shikun Sun · Longhui Wei · Junliang Xing · Jia Jia · Qi Tian

Exhibit Hall 1 #604
[ ]
[ PDF [ Poster


Recent score-based diffusion models (SBDMs) show promising results in unpaired image-to-image translation (I2I). However, existing methods, either energy-based or statistically-based, provide no explicit form of the interfered intermediate generative distributions. This work presents a new score-decomposed diffusion model (SDDM) on manifolds to explicitly optimize the tangled distributions during image generation. SDDM derives manifolds to make the distributions of adjacent time steps separable and decompose the score function or energy guidance into an image "denoising" part and a content "refinement" part. To refine the image in the same noise level, we equalize the refinement parts of the score function and energy guidance, which permits multi-objective optimization on the manifold. We also leverage the block adaptive instance normalization module to construct manifolds with lower dimensions but still concentrated with the perturbed reference image. SDDM outperforms existing SBDM-based methods with much fewer diffusion steps on several I2I benchmarks.

Chat is not available.