Skip to yearly menu bar Skip to main content


Understanding and Defending Patched-based Adversarial Attacks for Vision Transformer

Liang Liu · Yanan Guo · Youtao Zhang · Jun Yang

Exhibit Hall 1 #618
[ ]
[ PDF [ Poster


Vision Transformer (ViT) is an attention-based model architecture that has demonstrated superior performance on many computer vision tasks. However, its security properties, in particular, the robustness against adversarial attacks, are yet to be thoroughly studied. Recent works have shown that ViT is vulnerable to attention-based adversarial patch attacks, which cover 1-3% area of the input image using adversarial patches and degrades the model accuracy to 0%. This work provides a generic study targeting the attention-based patch attack. First, we experimentally observe that adversarial patches only activate in a few layers and become lazy during attention updating. According to experiments, we study the theory of how a small adversarial patch perturbates the whole model. Based on understanding adversarial patch attacks, we propose a simple but efficient defense that correctly detects more than 95% of adversarial patches.

Chat is not available.