Skip to yearly menu bar Skip to main content


Escaping saddle points in zeroth-order optimization: the power of two-point estimators

Zhaolin Ren · Yujie Tang · Na Li

Exhibit Hall 1 #332
[ ]
[ PDF [ Poster

Abstract: Two-point zeroth order methods are important in many applications of zeroth-order optimization arising in robotics, wind farms, power systems, online optimization, and adversarial robustness to black-box attacks in deep neural networks, where the problem can be high-dimensional and/or time-varying. Furthermore, such problems may be nonconvex and contain saddle points. While existing works have shown that zeroth-order methods utilizing $\Omega(d)$ function valuations per iteration (with $d$ denoting the problem dimension) can escape saddle points efficiently, it remains an open question if zeroth-order methods based on two-point estimators can escape saddle points. In this paper, we show that by adding an appropriate isotropic perturbation at each iteration, a zeroth-order algorithm based on $2m$ (for any $1 \leq m \leq d$) function evaluations per iteration can not only find $\epsilon$-second order stationary points polynomially fast, but do so using only $\tilde{O}(\frac{d}{m\epsilon^{2}\bar{\psi}})$ function evaluations, where $\bar{\psi} \geq \tilde{\Omega}(\sqrt{\epsilon})$ is a parameter capturing the extent to which the function of interest exhibits the strict saddle property.

Chat is not available.