Skip to yearly menu bar Skip to main content


Poster

A Flexible Diffusion Model

weitao du · He Zhang · Tao Yang · Yuanqi Du

Exhibit Hall 1 #425

Abstract:

Denoising diffusion (score-based) generative models have become a popular choice for modeling complex data. Recently, a deep connection between forward-backward stochastic differential equations (SDEs) and diffusion-based models has been established, leading to the development of new SDE variants such as sub-VP and critically-damped Langevin. Despite the empirical success of some hand-crafted forward SDEs, many potentially promising forward SDEs remain unexplored. In this work, we propose a general framework for parameterizing diffusion models, particularly the spatial part of forward SDEs, by leveraging the symplectic and Riemannian geometry of the data manifold. We introduce a systematic formalism with theoretical guarantees and connect it with previous diffusion models. Finally, we demonstrate the theoretical advantages of our method from a variational optimization perspective. We present numerical experiments on synthetic datasets, MNIST and CIFAR10 to validate the effectiveness of our framework.

Chat is not available.