Poster
Generative Adversarial Symmetry Discovery
Jianke Yang · Robin Walters · Nima Dehmamy · Rose Yu
Exhibit Hall 1 #703
Abstract:
Despite the success of equivariant neural networks in scientific applications, they require knowing the symmetry group a priori. However, it may be difficult to know which symmetry to use as an inductive bias in practice. Enforcing the wrong symmetry could even hurt the performance. In this paper, we propose a framework, LieGAN, to *automatically discover equivariances* from a dataset using a paradigm akin to generative adversarial training. Specifically, a generator learns a group of transformations applied to the data, which preserve the original distribution and fool the discriminator. LieGAN represents symmetry as interpretable Lie algebra basis and can discover various symmetries such as the rotation group $\mathrm{SO}(n)$, restricted Lorentz group $\mathrm{SO}(1,3)^+$ in trajectory prediction and top-quark tagging tasks. The learned symmetry can also be readily used in several existing equivariant neural networks to improve accuracy and generalization in prediction.
Chat is not available.