Instrumental Variable Estimation of Average Partial Causal Effects
Yuta Kawakami · manabu kuroki · Jin Tian
2023 Poster
Abstract
Instrumental variable (IV) analysis is a powerful tool widely used to elucidate causal relationships. We study the problem of estimating the average partial causal effect (APCE) of a continuous treatment in an IV setting. Specifically, we develop new methods for estimating APCE based on a recent identification condition via an integral equation. We develop two families of methods, nonparametric and parametric - the former uses the Picard iteration to solve the integral equation; the latter parameterizes APCE using a linear basis function model. We analyze the statistical and computational properties of the proposed methods and illustrate them on synthetic and real data.
Video
Chat is not available.
Successful Page Load