Skip to yearly menu bar Skip to main content


Towards Explaining Distribution Shifts

Sean Kulinski · David I. Inouye

Exhibit Hall 1 #417
[ ]
[ PDF [ Poster


A distribution shift can have fundamental consequences such as signaling a change in the operating environment or significantly reducing the accuracy of downstream models. Thus, understanding distribution shifts is critical for examining and hopefully mitigating the effect of such a shift. Most prior work has focused on merely detecting if a shift has occurred and assumes any detected shift can be understood and handled appropriately by a human operator. We hope to aid in these manual mitigation tasks by explaining the distribution shift using interpretable transportation maps from the original distribution to the shifted one. We derive our interpretable mappings from a relaxation of the optimal transport problem, where the candidate mappings are restricted to a set of interpretable mappings. We then use a wide array of quintessential examples of distribution shift in real-world tabular, text, and image cases to showcase how our explanatory mappings provide a better balance between detail and interpretability than baseline explanations by both visual inspection and our PercentExplained metric.

Chat is not available.