Skip to yearly menu bar Skip to main content


Geometric Clifford Algebra Networks

David Ruhe · Jayesh K. Gupta · Steven De Keninck · Max Welling · Johannes Brandstetter

Exhibit Hall 1 #534
[ ]
[ PDF [ Poster

Abstract: We propose Geometric Clifford Algebra Networks (GCANs) for modeling dynamical systems. GCANs are based on symmetry group transformations using geometric (Clifford) algebras. We first review the quintessence of modern (plane-based) geometric algebra, which builds on isometries encoded as elements of the $\mathrm{Pin}(p,q,r)$ group. We then propose the concept of group action layers, which linearly combine object transformations using pre-specified group actions. Together with a new activation and normalization scheme, these layers serve as adjustable geometric templates that can be refined via gradient descent. Theoretical advantages are strongly reflected in the modeling of three-dimensional rigid body transformations as well as large-scale fluid dynamics simulations, showing significantly improved performance over traditional methods.

Chat is not available.