Image perturbation technique is widely used to generate adversarial examples to attack networks, greatly decreasing the performance of networks. Unlike the existing works, in this paper, we introduce a novel framework Deep Perturbation Learning (DPL), the new insights into understanding image perturbations, to enhance the performance of networks rather than decrease the performance. Specifically, we learn image perturbations to amend the data distribution of training set to improve the performance of networks. This optimization w.r.t data distribution is non-trivial. To approach this, we tactfully construct a differentiable optimization target w.r.t. image perturbations via minimizing the empirical risk. Then we propose an alternating optimization of the network weights and perturbations. DPL can easily be adapted to a wide spectrum of downstream tasks and backbone networks. Extensive experiments demonstrate the effectiveness of our DPL on 6 datasets (CIFAR-10, CIFAR100, ImageNet, MS-COCO, PASCAL VOC, and SBD) over 3 popular vision tasks (image classification, object detection, and semantic segmentation) with different backbone architectures (e.g., ResNet, MobileNet, and ViT).