Skip to yearly menu bar Skip to main content


Oral

Pretraining Language Models with Human Preferences

Tomasz Korbak · Kejian Shi · Angelica Chen · Rasika Bhalerao · Christopher Buckley · Jason Phang · Samuel Bowman · Ethan Perez

Meeting Room 313

Abstract:

Language models (LMs) are pretrained to imitate text from large and diverse datasets that contain content that would violate human preferences if generated by an LM: falsehoods, offensive comments, personally identifiable information, low-quality or buggy code, among others. Here, we explore alternative objectives for pretraining LMs in a way that also guides them to generate text aligned with human preferences. We benchmark five objectives for pretraining with human feedback across three tasks and study how they affect the alignment and capabilities of pretrained LMs. We find a Pareto-optimal and simple approach among those we explored: conditional training, or learning distribution over tokens conditional on their human preference scores. Conditional training reduces the rate of undesirable content by up to an order of magnitude, both when generating without a prompt and with an adversarially-chosen prompt. Moreover, conditional training maintains the downstream task performance of standard LM pretraining, both before and after task-specific finetuning. Pretraining with human feedback results in much better preference satisfaction than standard LM pretraining followed by finetuning with feedback, i.e., learning and then unlearning undesirable behavior. Our results suggest that we should move beyond imitation learning when pretraining LMs and incorporate human preferences from the start of training.

Chat is not available.