Skip to yearly menu bar Skip to main content


Poster
in
Workshop: ES-FoMo: Efficient Systems for Foundation Models

BK-SDM: Architecturally Compressed Stable Diffusion for Efficient Text-to-Image Generation

Bo-Kyeong Kim · Hyoung-Kyu Song · Thibault Castells · Shinkook Choi


Abstract:

Exceptional text-to-image (T2I) generation results of Stable Diffusion models (SDMs) come with substantial computational demands. To resolve this issue, recent research on efficient SDMs has prioritized enabling fewer sampling steps and utilizing network quantization. Orthogonal to these directions, this study highlights the power of classical architectural compression for general-purpose T2I synthesis by introducing block-removed knowledge-distilled SDMs (BK-SDMs). We eliminate several residual and attention blocks from the U-Net of SDMs, obtaining over a 30% reduction in the number of parameters, MACs per sampling step, and latency. We conduct distillation-based pretraining with only 0.22M LAION pairs (fewer than 0.1% of the full training pairs) on a single A100 GPU. Despite being trained with limited resources, our compact models can imitate the original SDM by benefiting from transferred knowledge and achieve competitive results against larger multi-billion parameter models on the zero-shot MS-COCO benchmark. Moreover, we show the applicability of our lightweight pretrained models in personalized generation with DreamBooth finetuning.

Chat is not available.