Skip to yearly menu bar Skip to main content


Spotlight

Deep Hierarchy in Bandits

Joey Hong · Branislav Kveton · Sumeet Katariya · Manzil Zaheer · Mohammad Ghavamzadeh

Ballroom 3 & 4

Abstract:

Mean rewards of actions are often correlated. The form of these correlations may be complex and unknown a priori, such as the preferences of users for recommended products and their categories. To maximize statistical efficiency, it is important to leverage these correlations when learning. We formulate a bandit variant of this problem where the correlations of mean action rewards are represented by a hierarchical Bayesian model with latent variables. Since the hierarchy can have multiple layers, we call it deep. We propose a hierarchical Thompson sampling algorithm (HierTS) for this problem and show how to implement it efficiently for Gaussian hierarchies. The efficient implementation is possible due to a novel exact hierarchical representation of the posterior, which itself is of independent interest. We use this exact posterior to analyze the Bayes regret of HierTS. Our regret bounds reflect the structure of the problem, that the regret decreases with more informative priors, and can be recast to highlight reduced dependence on the number of actions. We confirm these theoretical findings empirically, in both synthetic and real-world experiments.

Chat is not available.