Skip to yearly menu bar Skip to main content


Session

Applications/MISC

Room 301 - 303

Moderator: Samuel Daulton

Abstract:

Chat is not available.

Thu 21 July 12:30 - 12:35 PDT

Spotlight
Revisiting End-to-End Speech-to-Text Translation From Scratch

Biao Zhang · Barry Haddow · Rico Sennrich

End-to-end (E2E) speech-to-text translation (ST) often depends on pretraining its encoder and/or decoder using source transcripts via speech recognition or text translation tasks, without which translation performance drops substantially. However, transcripts are not always available, and how significant such pretraining is for E2E ST has rarely been studied in the literature. In this paper, we revisit this question and explore the extent to which the quality of E2E ST trained on speech-translation pairs alone can be improved. We reexamine several techniques proven beneficial to ST previously, and offer a set of best practices that biases a Transformer-based E2E ST system toward training from scratch. Besides, we propose parameterized distance penalty to facilitate the modeling of locality in the self-attention model for speech. On four benchmarks covering 23 languages, our experiments show that, without using any transcripts or pretraining, the proposed system reaches and even outperforms previous studies adopting pretraining, although the gap remains in (extremely) low-resource settings. Finally, we discuss neural acoustic feature modeling, where a neural model is designed to extract acoustic features from raw speech signals directly, with the goal to simplify inductive biases and add freedom to the model in describing speech. For the first time, we demonstrate its feasibility and show encouraging results on ST tasks.

Thu 21 July 12:35 - 12:40 PDT

Spotlight
Data Scaling Laws in NMT: The Effect of Noise and Architecture

Yamini Bansal · Behrooz Ghorbani · Ankush Garg · Biao Zhang · Colin Cherry · Behnam Neyshabur · Orhan Firat

In this work, we study the effect of varying the architecture and training data quality on the data scaling properties of Neural Machine Translation (NMT). First, we establish that the test loss of encoder-decoder transformer models scales as a power law in the number of training samples, with a dependence on the model size. Then, we systematically vary aspects of the training setup to understand how they impact the data scaling laws. In particular, we change the following (1) Architecture and task setup: We compare to a transformer-LSTM hybrid, and a decoder-only transformer with a language modeling loss (2) Noise level in the training distribution: We experiment with filtering, and adding iid synthetic noise. In all the above cases, we find that the data scaling exponents are minimally impacted, suggesting that marginally worse architectures or training data can be compensated for by adding more data. Lastly, we find that using back-translated data instead of parallel data, can significantly degrade the scaling exponent.

Thu 21 July 12:40 - 12:45 PDT

Spotlight
Dialog Inpainting: Turning Documents into Dialogs

Zhuyun Dai · Arun Tejasvi Chaganty · Vincent Zhao · Aida Amini · Qazi Mamunur Rashid · Mike Green · Kelvin Guu

Many important questions (e.g. "How to eat healthier?") require conversation to establish context and explore in depth. However, conversational question answering (ConvQA) systems have long been stymied by scarce training data that is expensive to collect. To address this problem, we propose a new technique for synthetically generating diverse and high-quality dialog data: dialog inpainting. Our approach takes the text of any document and transforms it into a two-person dialog between the writer and an imagined reader: we treat sentences from the article as utterances spoken by the writer, and then use a dialog inpainter to predict what the imagined reader asked or said in between each of the writer's utterances. By applying this approach to passages from Wikipedia and the web, we produce WikiDialog and WebDialog, two datasets totalling 19 million diverse information-seeking dialogs -- 1,000x larger than the largest existing ConvQA dataset. Furthermore, human raters judge the answer adequacy and conversationality of WikiDialog to be as good or better than existing manually-collected datasets. Remarkably, our approach shows strong zero-shot capability, generating high quality synthetic data without using any in-domain ConvQA data. Using our inpainted data to pre-train ConvQA retrieval systems, we significantly advance state-of-the-art across three benchmarks (QReCC, OR-QuAC, TREC CAsT) yielding up to 40% relative gains on standard evaluation metrics.

Thu 21 July 12:45 - 12:50 PDT

Spotlight
Safe Exploration for Efficient Policy Evaluation and Comparison

Runzhe Wan · Branislav Kveton · Rui Song

High-quality data plays a central role in ensuring the accuracy of policy evaluation. This paper initiates the study of efficient and safe data collection for bandit policy evaluation. We formulate the problem and investigate its several representative variants. For each variant, we analyze its statistical properties, derive the corresponding exploration policy, and design an efficient algorithm for computing it. Both theoretical analysis and experiments support the usefulness of the proposed methods.

Thu 21 July 12:50 - 12:55 PDT

Spotlight
Adversarial Attacks on Gaussian Process Bandits

Eric Han · Jonathan Scarlett

Gaussian processes (GP) are a widely-adopted tool used to sequentially optimize black-box functions, where evaluations are costly and potentially noisy. Recent works on GP bandits have proposed to move beyond random noise and devise algorithms robust to adversarial attacks. This paper studies this problem from the attacker's perspective, proposing various adversarial attack methods with differing assumptions on the attacker's strength and prior information. Our goal is to understand adversarial attacks on GP bandits from theoretical and practical perspectives. We focus primarily on targeted attacks on the popular GP-UCB algorithm and a related elimination-based algorithm, based on adversarially perturbing the function f to produce another function f~ whose optima are in some target region. Based on our theoretical analysis, we devise both white-box attacks (known f) and black-box attacks (unknown f), with the former including a Subtraction attack and Clipping attack, and the latter including an Aggressive subtraction attack. We demonstrate that adversarial attacks on GP bandits can succeed in forcing the algorithm towards the target region even with a low attack budget, and we test our attacks' effectiveness on a diverse range of objective functions.

Thu 21 July 12:55 - 13:00 PDT

Spotlight
GALAXY: Graph-based Active Learning at the Extreme

Jifan Zhang · Julian Katz-Samuels · Robert Nowak

Active learning is a label-efficient approach to train highly effective models while interactively selecting only small subsets of unlabelled data for labelling and training. In ``open world" settings, the classes of interest can make up a small fraction of the overall dataset -- most of the data may be viewed as an out-of-distribution or irrelevant class. This leads to extreme class-imbalance, and our theory and methods focus on this core issue. We propose a new strategy for active learning called GALAXY (Graph-based Active Learning At the eXtrEme), which blends ideas from graph-based active learning and deep learning. GALAXY automatically and adaptively selects more class-balanced examples for labeling than most other methods for active learning. Our theory shows that GALAXY performs a refined form of uncertainty sampling that gathers a much more class-balanced dataset than vanilla uncertainty sampling. Experimentally, we demonstrate GALAXY's superiority over existing state-of-art deep active learning algorithms in unbalanced vision classification settings generated from popular datasets.

Thu 21 July 13:00 - 13:05 PDT

Spotlight
When Are Linear Stochastic Bandits Attackable?

Huazheng Wang · Haifeng Xu · Hongning Wang

We study adversarial attacks on linear stochastic bandits: by manipulating the rewards, an adversary aims to control the behaviour of the bandit algorithm. Perhaps surprisingly, we first show that some attack goals can never be achieved. This is in a sharp contrast to context-free stochastic bandits, and is intrinsically due to the correlation among arms in linear stochastic bandits. Motivated by this finding, this paper studies the attackability of a $k$-armed linear bandit environment. We first provide a complete necessity and sufficiency characterization of attackability based on the geometry of the arms' context vectors. We then propose a two-stage attack method against LinUCB and Robust Phase Elimination. The method first asserts whether the given environment is attackable; and if yes, it poisons the rewards to force the algorithm to pull a target arm linear times using only a sublinear cost. Numerical experiments further validate the effectiveness and cost-efficiency of the proposed attack method.

Thu 21 July 13:05 - 13:25 PDT

Oral
UniRank: Unimodal Bandit Algorithms for Online Ranking

Camille-Sovanneary GAUTHIER · Romaric Gaudel · Elisa Fromont

We tackle, in the multiple-play bandit setting, the online ranking problem of assigning L items to K predefined positions on a web page in order to maximize the number of user clicks. We propose a generic algorithm, UniRank, that tackles state-of-the-art click models. The regret bound of this algorithm is a direct consequence of the pseudo-unimodality property of the bandit setting with respect to a graph where nodes are ordered sets of indistinguishable items. The main contribution of UniRank is its O(L/∆ logT) regret for T consecutive assignments, where ∆ relates to the reward-gap between two items. This regret bound is based on the usually implicit condition that two items may not have the same attractiveness. Experiments against state-of-the-art learning algorithms specialized or not for different click models, show that our method has better regret performance than other generic algorithms on real life and synthetic datasets.

Thu 21 July 13:25 - 13:30 PDT

Spotlight
Correlation Clustering via Strong Triadic Closure Labeling: Fast Approximation Algorithms and Practical Lower Bounds

Nate Veldt

Correlation clustering is a widely studied framework for clustering based on pairwise similarity and dissimilarity scores, but its best approximation algorithms rely on impractical linear programming relaxations. We present faster approximation algorithms that avoid these relaxations, for two well-studied special cases: cluster editing and cluster deletion. We accomplish this by drawing new connections to edge labeling problems related to the principle of strong triadic closure. This leads to faster and more practical linear programming algorithms, as well as extremely scalable combinatorial techniques, including the first combinatorial approximation algorithm for cluster deletion. In practice, our algorithms produce approximate solutions that nearly match the best algorithms in quality, while scaling to problems that are orders of magnitude larger.

Thu 21 July 13:30 - 13:35 PDT

Spotlight
Interactive Correlation Clustering with Existential Cluster Constraints

Rico Angell · Nicholas Monath · Nishant Yadav · Andrew McCallum

We consider the problem of clustering with user feedback. Existing methods express constraints about the input data points, most commonly through must-link and cannot-link constraints on data point pairs. In this paper, we introduce existential cluster constraints: a new form of feedback where users indicate the features of desired clusters. Specifically, users make statements about the existence of a cluster having (and not having) particular features. Our approach has multiple advantages: (1) constraints on clusters can express user intent more efficiently than point pairs; (2) in cases where the users' mental model is of the desired clusters, it is more natural for users to express cluster-wise preferences; (3) it functions even when privacy restrictions prohibit users from seeing raw data. In addition to introducing existential cluster constraints, we provide an inference algorithm for incorporating our constraints into the output clustering. Finally, we demonstrate empirically that our proposed framework facilitates more accurate clustering with dramatically fewer user feedback inputs.

Thu 21 July 13:35 - 13:40 PDT

Spotlight
Simultaneous Graph Signal Clustering and Graph Learning

Abdullah Karaaslanli · Selin Aviyente

Graph learning (GL) aims to infer the topology of an unknown graph from a set of observations on its nodes, i.e., graph signals. While most of the existing GL approaches focus on homogeneous datasets, in many real world applications, data is heterogeneous, where graph signals are clustered and each cluster is associated with a different graph. In this paper, we address the problem of learning multiple graphs from heterogeneous data by formulating an optimization problem for joint graph signal clustering and graph topology inference. In particular, our approach extends spectral clustering by partitioning the graph signals not only based on their pairwise similarities but also their smoothness with respect to the graphs associated with the clusters. The proposed method also learns the representative graph for each cluster using the smoothness of the graph signals with respect to the graph topology. The resulting optimization problem is solved with an efficient block-coordinate descent algorithm and results on simulated and real data indicate the effectiveness of the proposed method.

Thu 21 July 13:40 - 13:45 PDT

Spotlight
Bregman Power k-Means for Clustering Exponential Family Data

Adithya D Vellal · Saptarshi Chakraborty · Jason Xu

Recent progress in center-based clustering algorithms combats poor local minima by implicit annealing through a family of generalized means. These methods are variations of Lloyd's celebrated k-means algorithm, and are most appropriate for spherical clusters such as those arising from Gaussian data. In this paper, we bridge these new algorithmic advances to classical work on hard clustering under Bregman divergences, which enjoy a bijection to exponential family distributions and are thus well-suited for clustering objects arising from a breadth of data generating mechanisms. The elegant properties of Bregman divergences allow us to maintain closed form updates in a simple and transparent algorithm, and moreover lead to new theoretical arguments for establishing finite sample bounds that relax the bounded support assumption made in the existing state of the art. Additionally, we consider thorough empirical analyses on simulated experiments and a case study on rainfall data, finding that the proposed method outperforms existing peer methods in a variety of non-Gaussian data settings.

Thu 21 July 13:45 - 13:50 PDT

Spotlight
SpaceMAP: Visualizing High-Dimensional Data by Space Expansion

Xinrui Zu · Qian Tao

Dimensionality reduction (DR) of high-dimensional data is of theoretical and practical interest in machine learning. However, there exist intriguing, non-intuitive discrepancies between the geometry of high- and low-dimensional space. We look into such discrepancies and propose a novel visualization method called Space-based Manifold Approximation and Projection (SpaceMAP). Our method establishes an analytical transformation on distance metrics between spaces to address the ``crowding problem" in DR. With the proposed equivalent extended distance (EED), we are able to match the capacity of high- and low-dimensional space in a principled manner. To handle complex data with different manifold properties, we propose hierarchical manifold approximation to model the similarity function in a data-specific manner. We evaluated SpaceMAP on a range of synthetic and real datasets with varying manifold properties, and demonstrated its excellent performance in comparison with classical and state-of-the-art DR methods. In particular, the concept of space expansion provides a generic framework for understanding nonlinear DR methods including the popular t-distributed Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold Approximation and Projection

Thu 21 July 13:50 - 13:55 PDT

Spotlight
Unsupervised Ground Metric Learning Using Wasserstein Singular Vectors

Geert-Jan Huizing · Laura Cantini · Gabriel Peyré

Defining meaningful distances between samples in a dataset is a fundamental problem in machine learning. Optimal Transport (OT) lifts a distance between features (the "ground metric") to a geometrically meaningful distance between samples. However, there is usually no straightforward choice of ground metric. Supervised ground metric learning approaches exist but require labeled data. In absence of labels, only ad-hoc ground metrics remain. Unsupervised ground metric learning is thus a fundamental problem to enable data-driven applications of OT. In this paper, we propose for the first time a canonical answer by simultaneously computing an OT distance between samples and between features of a dataset. These distance matrices emerge naturally as positive singular vectors of the function mapping ground metrics to OT distances. We provide criteria to ensure the existence and uniqueness of these singular vectors. We then introduce scalable computational methods to approximate them in high-dimensional settings, using stochastic approximation and entropic regularization. Finally, we showcase Wasserstein Singular Vectors on a single-cell RNA-sequencing dataset.

Thu 21 July 13:55 - 14:00 PDT

Spotlight
Understanding Doubly Stochastic Clustering

Tianjiao Ding · Derek Lim · Rene Vidal · Benjamin Haeffele

The problem of projecting a matrix onto the space of \emph{doubly stochastic} matrices finds several applications in machine learning. For example, in spectral clustering, it has been shown that forming the normalized Laplacian matrix from a data affinity matrix has close connections to projecting it onto the set of doubly stochastic matrices. However, the analysis of why this projection improves clustering has been limited. In this paper we present theoretical conditions on the given affinity matrix under which its doubly stochastic projection is an ideal affinity matrix (i.e., it has no false connections between clusters, and is well-connected within each cluster). In particular, we show that a necessary and sufficient condition for a projected affinity matrix to be ideal reduces to a set of conditions on the input affinity that decompose along each cluster. Further, in the \emph{subspace clustering} problem, where each cluster is defined by a linear subspace, we provide geometric conditions on the underlying subspaces which guarantee correct clustering via a continuous version of the problem. This allows us to explain theoretically the remarkable performance of a recently proposed doubly stochastic subspace clustering method.