Skip to yearly menu bar Skip to main content


Session

Reinforcement Learning

Room 327 - 329

Moderator: Hepeng Li

Abstract:

Chat is not available.

Thu 21 July 10:30 - 10:50 PDT

Oral
Generalised Policy Improvement with Geometric Policy Composition

Shantanu Thakoor · Mark Rowland · Diana Borsa · Will Dabney · Remi Munos · Andre Barreto

We introduce a method for policy improvement that interpolates between the greedy approach of value-based reinforcement learning (RL) and the full planning approach typical of model-based RL. The new method builds on the concept of a geometric horizon model (GHM, also known as a \gamma-model), which models the discounted state-visitation distribution of a given policy. We show that we can evaluate any non-Markov policy that switches between a set of base Markov policies with fixed probability by a careful composition of the base policy GHMs, without any additional learning. We can then apply generalised policy improvement (GPI) to collections of such non-Markov policies to obtain a new Markov policy that will in general outperform its precursors. We provide a thorough theoretical analysis of this approach, develop applications to transfer and standard RL, and empirically demonstrate its effectiveness over standard GPI on a challenging deep RL continuous control task. We also provide an analysis of GHM training methods, proving a novel convergence result regarding previously proposed methods and showing how to train these models stably in deep RL settings.

Thu 21 July 10:50 - 10:55 PDT

Spotlight
Offline Meta-Reinforcement Learning with Online Self-Supervision

Vitchyr Pong · Ashvin Nair · Laura Smith · Catherine Huang · Sergey Levine

Meta-reinforcement learning (RL) methods can meta-train policies that adapt to new tasks with orders of magnitude less data than standard RL, but meta-training itself is costly and time-consuming. If we can meta-train on offline data, then we can reuse the same static dataset, labeled once with rewards for different tasks, to meta-train policies that adapt to a variety of new tasks at meta-test time. Although this capability would make meta-RL a practical tool for real-world use, offline meta-RL presents additional challenges beyond online meta-RL or standard offline RL settings. Meta-RL learns an exploration strategy that collects data for adapting, and also meta-trains a policy that quickly adapts to data from a new task. Since this policy was meta-trained on a fixed, offline dataset, it might behave unpredictably when adapting to data collected by the learned exploration strategy, which differs systematically from the offline data and thus induces distributional shift. We propose a hybrid offline meta-RL algorithm, which uses offline data with rewards to meta-train an adaptive policy, and then collects additional unsupervised online data, without any reward labels to bridge this distribution shift. By not requiring reward labels for online collection, this data can be much cheaper to collect. We compare our method to prior work on offline meta-RL on simulated robot locomotion and manipulation tasks and find that using additional unsupervised online data collection leads to a dramatic improvement in the adaptive capabilities of the meta-trained policies, matching the performance of fully online meta-RL on a range of challenging domains that require generalization to new tasks.

Thu 21 July 10:55 - 11:00 PDT

Spotlight
Divergence-Regularized Multi-Agent Actor-Critic

Kefan Su · Zongqing Lu

Entropy regularization is a popular method in reinforcement learning (RL). Although it has many advantages, it alters the RL objective and makes the converged policy deviate from the optimal policy of the original Markov Decision Process (MDP). Though divergence regularization has been proposed to settle this problem, it cannot be trivially applied to cooperative multi-agent reinforcement learning (MARL). In this paper, we investigate divergence regularization in cooperative MARL and propose a novel off-policy cooperative MARL framework, divergence-regularized multi-agent actor-critic (DMAC). Theoretically, we derive the update rule of DMAC which is naturally off-policy, guarantees the monotonic policy improvement and convergence in both the original MDP and the divergence-regularized MDP, and is not biased by the regularization. We also give a bound of the discrepancy between the converged policy and the optimal policy in the original MDP. DMAC is a flexible framework and can be combined with many existing MARL algorithms. Empirically, we evaluate DMAC in a didactic stochastic game and StarCraft Multi-Agent Challenge and show that DMAC substantially improves the performance of existing MARL algorithms.

Thu 21 July 11:00 - 11:05 PDT

Spotlight
Understanding Policy Gradient Algorithms: A Sensitivity-Based Approach

Shuang Wu · Ling Shi · Jun Wang · Guangjian Tian

The REINFORCE algorithm \cite{williams1992simple} is popular in policy gradient (PG) for solving reinforcement learning (RL) problems. Meanwhile, the theoretical form of PG is from~\cite{sutton1999policy}. Although both formulae prescribe PG, their precise connections are not yet illustrated. Recently, \citeauthor{nota2020policy} (\citeyear{nota2020policy}) have found that the ambiguity causes implementation errors. Motivated by the ambiguity and implementation incorrectness, we study PG from a perturbation perspective. In particular, we derive PG in a unified framework, precisely clarify the relation between PG implementation and theory, and echos back the findings by \citeauthor{nota2020policy}. Diving into factors contributing to empirical successes of the existing erroneous implementations, we find that small approximation error and the experience replay mechanism play critical roles.

Thu 21 July 11:05 - 11:10 PDT

Spotlight
Off-Policy Reinforcement Learning with Delayed Rewards

Beining Han · Zhizhou Ren · Zuofan Wu · Yuan Zhou · Jian Peng

We study deep reinforcement learning (RL) algorithms with delayed rewards. In many real-world tasks, instant rewards are often not readily accessible or even defined immediately after the agent performs actions. In this work, we first formally define the environment with delayed rewards and discuss the challenges raised due to the non-Markovian nature of such environments. Then, we introduce a general off-policy RL framework with a new Q-function formulation that can handle the delayed rewards with theoretical convergence guarantees. For practical tasks with high dimensional state spaces, we further introduce the HC-decomposition rule of the Q-function in our framework which naturally leads to an approximation scheme that helps boost the training efficiency and stability. We finally conduct extensive experiments to demonstrate the superior performance of our algorithms over the existing work and their variants.

Thu 21 July 11:10 - 11:15 PDT

Spotlight
Direct Behavior Specification via Constrained Reinforcement Learning

Julien Roy · Roger Girgis · Joshua Romoff · Pierre-Luc Bacon · Christopher Pal

The standard formulation of Reinforcement Learning lacks a practical way of specifying what are admissible and forbidden behaviors. Most often, practitioners go about the task of behavior specification by manually engineering the reward function, a counter-intuitive process that requires several iterations and is prone to reward hacking by the agent. In this work, we argue that constrained RL, which has almost exclusively been used for safe RL, also has the potential to significantly reduce the amount of work spent for reward specification in applied RL projects. To this end, we propose to specify behavioral preferences in the CMDP framework and to use Lagrangian methods to automatically weigh each of these behavioral constraints. Specifically, we investigate how CMDPs can be adapted to solve goal-based tasks while adhering to several constraints simultaneously. We evaluate this framework on a set of continuous control tasks relevant to the application of Reinforcement Learning for NPC design in video games.

Thu 21 July 11:15 - 11:35 PDT

Oral
Large Batch Experience Replay

Thibault Lahire · Matthieu Geist · Emmanuel Rachelson

Several algorithms have been proposed to sample non-uniformly the replay buffer of deep Reinforcement Learning (RL) agents to speed-up learning, but very few theoretical foundations of these sampling schemes have been provided. Among others, Prioritized Experience Replay appears as a hyperparameter sensitive heuristic, even though it can provide good performance. In this work, we cast the replay buffer sampling problem as an importance sampling one for estimating the gradient. This allows deriving the theoretically optimal sampling distribution, yielding the best theoretical convergence speed.Elaborating on the knowledge of the ideal sampling scheme, we exhibit new theoretical foundations of Prioritized Experience Replay. The optimal sampling distribution being intractable, we make several approximations providing good results in practice and introduce, among others, LaBER (Large Batch Experience Replay), an easy-to-code and efficient method for sampling the replay buffer. LaBER, which can be combined with Deep Q-Networks, distributional RL agents or actor-critic methods, yields improved performance over a diverse range of Atari games and PyBullet environments, compared to the base agent it is implemented on and to other prioritization schemes.

Thu 21 July 11:35 - 11:40 PDT

Spotlight
Evolving Curricula with Regret-Based Environment Design

Jack Parker-Holder · Minqi Jiang · Michael Dennis · Mikayel Samvelyan · Jakob Foerster · Edward Grefenstette · Tim Rocktäschel

Training generally-capable agents with reinforcement learning (RL) remains a significant challenge. A promising avenue for improving the robustness of RL agents is through the use of curricula. One such class of methods frames environment design as a game between a student and a teacher, using regret-based objectives to produce environment instantiations (or levels) at the frontier of the student agent's capabilities. These methods benefit from theoretical robustness guarantees at equilibrium, yet they often struggle to find effective levels in challenging design spaces in practice. By contrast, evolutionary approaches incrementally alter environment complexity, resulting in potentially open-ended learning, but often rely on domain-specific heuristics and vast amounts of computational resources. This work proposes harnessing the power of evolution in a principled, regret-based curriculum. Our approach, which we call Adversarially Compounding Complexity by Editing Levels (ACCEL), seeks to constantly produce levels at the frontier of an agent's capabilities, resulting in curricula that start simple but become increasingly complex. ACCEL maintains the theoretical benefits of prior regret-based methods, while providing significant empirical gains in a diverse set of environments. An interactive version of this paper is available at https://accelagent.github.io.

Thu 21 July 11:40 - 11:45 PDT

Spotlight
Robust Deep Reinforcement Learning through Bootstrapped Opportunistic Curriculum

Junlin Wu · Yevgeniy Vorobeychik

Despite considerable advances in deep reinforcement learning, it has been shown to be highly vulnerable to adversarial perturbations to state observations. Recent efforts that have attempted to improve adversarial robustness of reinforcement learning can nevertheless tolerate only very small perturbations, and remain fragile as perturbation size increases. We propose Bootstrapped Opportunistic Adversarial Curriculum Learning (BCL), a novel flexible adversarial curriculum learning framework for robust reinforcement learning. Our framework combines two ideas: conservatively bootstrapping each curriculum phase with highest quality solutions obtained from multiple runs of the previous phase, and opportunistically skipping forward in the curriculum. In our experiments we show that the proposed BCL framework enables dramatic improvements in robustness of learned policies to adversarial perturbations. The greatest improvement is for Pong, where our framework yields robustness to perturbations of up to 25/255; in contrast, the best existing approach can only tolerate adversarial noise up to 5/255. Our code is available at: https://github.com/jlwu002/BCL.

Thu 21 July 11:45 - 11:50 PDT

Spotlight
Transformers are Meta-Reinforcement Learners

Luckeciano Melo

The transformer architecture and variants presented a remarkable success across many machine learning tasks in recent years. This success is intrinsically related to the capability of handling long sequences and the presence of context-dependent weights from the attention mechanism. We argue that these capabilities suit the central role of a Meta-Reinforcement Learning algorithm. Indeed, a meta-RL agent needs to infer the task from a sequence of trajectories. Furthermore, it requires a fast adaptation strategy to adapt its policy for a new task - which can be achieved using the self-attention mechanism. In this work, we present TrMRL (Transformers for Meta-Reinforcement Learning), a meta-RL agent that mimics the memory reinstatement mechanism using the transformer architecture. It associates the recent past of working memories to build an episodic memory recursively through the transformer layers. We show that the self-attention computes a consensus representation that minimizes the Bayes Risk at each layer and provides meaningful features to compute the best actions. We conducted experiments in high-dimensional continuous control environments for locomotion and dexterous manipulation. Results show that TrMRL presents comparable or superior asymptotic performance, sample efficiency, and out-of-distribution generalization compared to the baselines in these environments.

Thu 21 July 11:50 - 11:55 PDT

Spotlight
Reducing Variance in Temporal-Difference Value Estimation via Ensemble of Deep Networks

Litian Liang · Yaosheng Xu · Stephen Mcaleer · Dailin Hu · Alexander Ihler · Pieter Abbeel · Roy Fox

In temporal-difference reinforcement learning algorithms, variance in value estimation can cause instability and overestimation of the maximal target value. Many algorithms have been proposed to reduce overestimation, including several recent ensemble methods, however none have shown success in sample-efficient learning through addressing estimation variance as the root cause of overestimation. In this paper, we propose MeanQ, a simple ensemble method that estimates target values as ensemble means. Despite its simplicity, MeanQ shows remarkable sample efficiency in experiments on the Atari Learning Environment benchmark. Importantly, we find that an ensemble of size 5 sufficiently reduces estimation variance to obviate the lagging target network, eliminating it as a source of bias and further gaining sample efficiency. We justify intuitively and empirically the design choices in MeanQ, including the necessity of independent experience sampling. On a set of 26 benchmark Atari environments, MeanQ outperforms all tested baselines, including the best available baseline, SUNRISE, at 100K interaction steps in 16/26 environments, and by 68% on average. MeanQ also outperforms Rainbow DQN at 500K steps in 21/26 environments, and by 49% on average, and achieves average human-level performance using 200K (±100K) interaction steps. Our implementation is available at https://github.com/indylab/MeanQ.

Thu 21 July 11:55 - 12:00 PDT

Spotlight
Constrained Variational Policy Optimization for Safe Reinforcement Learning

Zuxin Liu · Zhepeng Cen · Vladislav Isenbaev · Wei Liu · Steven Wu · Bo Li · Ding Zhao

Safe reinforcement learning (RL) aims to learn policies that satisfy certain constraints before deploying them to safety-critical applications.Previous primal-dual style approaches suffer from instability issues and lack optimality guarantees. This paper overcomes the issues from the perspective of probabilistic inference. We introduce a novel Expectation-Maximization approach to naturally incorporate constraints during the policy learning: 1) a provable optimal non-parametric variational distribution could be computed in closed form after a convex optimization (E-step); 2) the policy parameter is improved within the trust region based on the optimal variational distribution (M-step).The proposed algorithm decomposes the safe RL problem into a convex optimization phase and a supervised learning phase, which yields a more stable training performance.A wide range of experiments on continuous robotic tasks shows that the proposed method achieves significantly better constraint satisfaction performance and better sample efficiency than baselines.The code is available at https://github.com/liuzuxin/cvpo-safe-rl.