Skip to yearly menu bar Skip to main content


Session

Deep Learning/MISC

Room 309

Moderator: Fangda Gu

Abstract:
Chat is not available.

Thu 21 July 10:30 - 10:35 PDT

Spotlight
Dynamic Topic Models for Temporal Document Networks

Delvin Zhang · Hady Lauw

Dynamic topic models explore the time evolution of topics in temporally accumulative corpora. While existing topic models focus on the dynamics of individual documents, we propose two neural topic models aimed at learning unified topic distributions that incorporate both document dynamics and network structure. For the first model, by adding a time dimension, we propose Time-Aware Optimal Transport, which measures the probability of a link between two differently timestamped documents using their semantic distance. Since the gradually evolving topological structure of network may also influence the establishment of a new link, for the second model, we further design a Temporal Point Process to capture the impact of historical neighbors on the current link formation at the network level. Experiments on four dynamic document networks demonstrate the advantage of our models in jointly modeling document dynamics and network adjacency.

Thu 21 July 10:35 - 10:40 PDT

Spotlight
A Functional Information Perspective on Model Interpretation

Itai Gat · Nitay Calderon · Roi Reichart · Tamir Hazan

Contemporary predictive models are hard to interpret as their deep nets exploit numerous complex relations between input elements. This work suggests a theoretical framework for model interpretability by measuring the contribution of relevant features to the functional entropy of the network with respect to the input. We rely on the log-Sobolev inequality that bounds the functional entropy by the functional Fisher information with respect to the covariance of the data. This provides a principled way to measure the amount of information contribution of a subset of features to the decision function. Through extensive experiments, we show that our method surpasses existing interpretability sampling-based methods on various data signals such as image, text, and audio.

Thu 21 July 10:40 - 10:45 PDT

Spotlight
Be Like Water: Adaptive Floating Point for Machine Learning

Thomas Y. Yeh · Maxwell Sterner · Zerlina Lai · Brandon Chuang · Alexander Ihler

In the pursuit of optimizing memory and compute density to accelerate machine learning applications, reduced precision training and inference has been an active area of research. While some approaches selectively apply low precision computations, this may require costly off-chip data transfers or mixed precision support. In this paper, we propose a novel numerical representation, Adaptive Floating Point (AFP), that dynamically adjusts to the characteristics of deep learning data. AFP requires no changes to the model topology, requires no additional training, and applies to all layers of DNN models. We evaluate AFP on aspectrum of representative models in computer vision and NLP, and show that our technique enables ultra-low precision inference of deep learning models while providing accuracy comparable to full precision inference. By dynamically adjusting to ML data, AFP increases memory density by 1.6x, 1.6x, and 3.2x and compute density by 4x, 1.3x, and 12x when compared to BFP, BFloat16, and FP32.

Thu 21 July 10:45 - 10:50 PDT

Spotlight
Lie Point Symmetry Data Augmentation for Neural PDE Solvers

Johannes Brandstetter · Max Welling · Daniel Worrall

Neural networks are increasingly being used to solve partial differential equations (PDEs), replacing slower numerical solvers. However, a critical issue is that neural PDE solvers require high-quality ground truth data, which usually must come from the very solvers they are designed to replace. Thus, we are presented with a proverbial chicken-and-egg problem. In this paper, we present a method, which can partially alleviate this problem, by improving neural PDE solver sample complexity---Lie point symmetry data augmentation (LPSDA). In the context of PDEs, it turns out we are able to quantitatively derive an exhaustive list of data transformations, based on the Lie point symmetry group of the PDEs in question, something not possible in other application areas. We present this framework and demonstrate how it can easily be deployed to improve neural PDE solver sample complexity by an order of magnitude.

Thu 21 July 10:50 - 10:55 PDT

Spotlight
Fast Provably Robust Decision Trees and Boosting

Jun-Qi Guo · Ming-Zhuo Teng · Wei Gao · Zhi-Hua Zhou

Learning with adversarial robustness has been a challenge in contemporary machine learning, and recent years have witnessed increasing attention on robust decision trees and ensembles, mostly working with high computational complexity or without guarantees of provable robustness. This work proposes the Fast Provably Robust Decision Tree (FPRDT) with the smallest computational complexity O(n log n), a tradeoff between global and local optimizations over the adversarial 0/1 loss. We further develop the Provably Robust AdaBoost (PRAdaBoost) according to our robust decision trees, and present convergence analysis for training adversarial 0/1 loss. We conduct extensive experiments to support our approaches; in particular, our approaches are superior to those unprovably robust methods, and achieve better or comparable performance to those provably robust methods yet with the smallest running time.

Thu 21 July 10:55 - 11:00 PDT

Spotlight
Order Constraints in Optimal Transport

Yu Chin Fabian Lim · Laura Wynter · Shiau Hong Lim

Optimal transport is a framework for comparing measures whereby a cost is incurred for transporting one measure to another. Recent works have aimed to improve optimal transport plans through the introduction of various forms of structure. We introduce novel order constraints into the optimal transport formulation to allow for the incorporation of structure. We define an efficient method for obtaining explainable solutions to the new formulation that scales far better than standard approaches. The theoretical properties of the method are provided. We demonstrate experimentally that order constraints improve explainability using the e-SNLI (Stanford Natural Language Inference) dataset that includes human-annotated rationales as well as on several image color transfer examples.

Thu 21 July 11:00 - 11:20 PDT

Oral
Sublinear-Time Clustering Oracle for Signed Graphs

Stefan Neumann · Pan Peng

Social networks are often modeled using signed graphs, where vertices correspond to users and edges have a sign that indicates whether an interaction between users was positive or negative. The arising signed graphs typically contain a clear community structure in the sense that the graph can be partitioned into a small number of polarized communities, each defining a sparse cut and indivisible into smaller polarized sub-communities. We provide a local clustering oracle for signed graphs with such a clear community structure, that can answer membership queries, i.e., ``Given a vertex~$v$, which community does~$v$ belong to?'', in sublinear time by reading only a small portion of the graph. Formally, when the graph has bounded maximum degree and the number of communities is at most $O(\log n)$, then with $\tilde{O}(\sqrt{n}\operatorname{poly}(1/\varepsilon))$ preprocessing time, our oracle can answer each membership query in $\tilde{O}(\sqrt{n}\operatorname{poly}(1/\varepsilon))$ time, and it correctly classifies a $(1-\varepsilon)$-fraction of vertices w.r.t. a set of hidden planted ground-truth communities. Our oracle is desirable in applications where the clustering information is needed for only a small number of vertices. Previously, such local clustering oracles were only known for unsigned graphs; our generalization to signed graphs requires a number of new ideas and gives a novel spectral analysis of the behavior of random walks with signs. We evaluate our algorithm for constructing such an oracle and answering membership queries on both synthetic and real-world datasets, validating its performance in practice.

Thu 21 July 11:20 - 11:25 PDT

Spotlight
PAC-Bayesian Bounds on Rate-Efficient Classifiers

Alhabib Abbas · Yiannis Andreopoulos

We derive analytic bounds on the noise invariance of majority vote classifiers operating on compressed inputs. Specifically, starting from recent bounds on the true risk of majority vote classifiers, we extend the applicability of PAC-Bayesian theory to quantify the resilience of majority votes to input noise stemming from compression. The derived bounds are intuitive in binary classification settings, where they can be measured as expressions of voter differentials and voter pair agreement. By combining measures of input distortion with analytic guarantees on noise invariance, we prescribe rate-efficient machines to compress inputs without affecting subsequent classification. Our validation shows how bounding noise invariance can inform the compression stage for any majority vote classifier such that worst-case implications of bad input reconstructions are known, and inputs can be compressed to the minimum amount of information needed prior to inference.

Thu 21 July 11:25 - 11:30 PDT

Spotlight
More Efficient Sampling for Tensor Decomposition With Worst-Case Guarantees

Osman Asif Malik

Recent papers have developed alternating least squares (ALS) methods for CP and tensor ring decomposition with a per-iteration cost which is sublinear in the number of input tensor entries for low-rank decomposition. However, the per-iteration cost of these methods still has an exponential dependence on the number of tensor modes when parameters are chosen to achieve certain worst-case guarantees. In this paper, we propose sampling-based ALS methods for the CP and tensor ring decompositions whose cost does not have this exponential dependence, thereby significantly improving on the previous state-of-the-art. We provide a detailed theoretical analysis and also apply the methods in a feature extraction experiment.

Thu 21 July 11:30 - 11:35 PDT

Spotlight
Sharp-MAML: Sharpness-Aware Model-Agnostic Meta Learning

Momin Abbas · Quan Xiao · Lisha Chen · Pin-Yu Chen · Tianyi Chen

Model-agnostic meta learning (MAML) is currently one of the dominating approaches for few-shot meta-learning. Albeit its effectiveness, the training of MAML can be challenging due to the innate bilevel problem structure. Specifically, the loss landscape of MAML is much complex with possibly many more saddle points and local minima than its empirical risk minimization counterpart. To address this challenge, we leverage the recently invented sharpness-aware minimization and develop a sharpness-aware MAML approach that we term Sharp-MAML. We empirically demonstrate that Sharp-MAML and its computation-efficient variant can outperform popular existing MAML baselines (e.g., +12% accuracy on Mini-Imagenet). We complement the empirical study with the convergence analysis and the generalization bound of Sharp-MAML. To the best of our knowledge, this is the first empirical and theoretical study on sharpness-aware minimization in the context of bilevel optimization.

Thu 21 July 11:35 - 11:40 PDT

Spotlight
On the Convergence of Local Stochastic Compositional Gradient Descent with Momentum

Hongchang Gao · Junyi Li · Heng Huang

Federated Learning has been actively studied due to its efficiency in numerous real-world applications in the past few years. However, the federated stochastic compositional optimization problem is still underexplored, even though it has widespread applications in machine learning. In this paper, we developed a novel local stochastic compositional gradient descent with momentum method, which facilitates Federated Learning for the stochastic compositional problem. Importantly, we investigated the convergence rate of our proposed method and proved that it can achieve the $O(1/\epsilon^4)$ sample complexity, which is better than existing methods. Meanwhile, our communication complexity $O(1/\epsilon^3)$ can match existing methods. To the best of our knowledge, this is the first work achieving such favorable sample and communication complexities. Additionally, extensive experimental results demonstrate the superior empirical performance over existing methods, confirming the efficacy of our method.

Thu 21 July 11:40 - 11:45 PDT

Spotlight
SPDY: Accurate Pruning with Speedup Guarantees

Elias Frantar · Dan Alistarh

The recent focus on the efficiency of deep neural networks (DNNs) has led to significant work on model compression approaches, of which weight pruning is one of the most popular.At the same time, there is rapidly-growing computational support for efficiently executing the unstructured-sparse models obtained via pruning. Yet, most existing pruning methods minimize just the number of remaining weights, i.e. the size of the model, rather than optimizing for inference time.We address this gap by introducing SPDY, a new compression method which automatically determines layer-wise sparsity targets achieving a desired inference speedup on a given system, while minimizing accuracy loss. SPDY is the composition of two new techniques. The first is an efficient and general dynamic programming algorithm for solving constrained layer-wise compression problems, given a set of layer-wise error scores.The second technique is a local search procedure for automatically determining such scores in an accurate and robust manner.Experiments across popular vision and language models show that SPDY guarantees speedups while recovering higher accuracy relative to existing strategies, both for one-shot and gradual pruning scenarios, and is compatible with most existing pruning approaches. We also extend our approach to the recently-proposed task of pruning with very little data, where we achieve the best known accuracy recovery when pruning to the GPU-supported 2:4 sparsity pattern.

Thu 21 July 11:45 - 11:50 PDT

Spotlight
Flashlight: Enabling Innovation in Tools for Machine Learning

Jacob Kahn · Vineel Pratap · Tatiana Likhomanenko · Qiantong Xu · Awni Hannun · Jeff Cai · Paden Tomasello · Ann Lee · Edouard Grave · Gilad Avidov · Benoit Steiner · Vitaliy Liptchinsky · Gabriel Synnaeve · Ronan Collobert

As the computational requirements for machine learning systems and the size and complexity of machine learning frameworks increases, essential framework innovation has become challenging. While computational needs have driven recent compiler, networking, and hardware advancements, utilization of those advancements by machine learning tools is occurring at a slower pace. This is in part due to the difficulties involved in prototyping new computational paradigms with existing frameworks. Large frameworks prioritize machine learning researchers and practitioners as end users and pay comparatively little attention to systems researchers who can push frameworks forward --- we argue that both are equally important stakeholders. We introduce Flashlight, an open-source library built to spur innovation in machine learning tools and systems by prioritizing open, modular, customizable internals and state-of-the-art, research-ready models and training setups across a variety of domains. Flashlight allows systems researchers to rapidly prototype and experiment with novel ideas in machine learning computation and has low overhead, competing with and often outperforming other popular machine learning frameworks. We see Flashlight as a tool enabling research that can benefit widely used libraries downstream and bring machine learning and systems researchers closer together.

Thu 21 July 11:50 - 11:55 PDT

Spotlight
On the Robustness of CountSketch to Adaptive Inputs

Edith Cohen · Xin Lyu · Jelani Nelson · Tamas Sarlos · Moshe Shechner · Uri Stemmer

The last decade saw impressive progress towards understanding the performance of algorithms in {\em adaptive} settings, where subsequent inputs may depend on the output from prior inputs. Adaptive settings arise in processes with feedback or with adversarial attacks. Existing designs of robust algorithms are generic wrappers of non-robust counterparts and leave open the possibility of better tailored designs. The lowers bounds (attacks) are similarly worst-case and their significance to practical setting is unclear. Aiming to understand these questions, we study the robustness of \texttt{CountSketch}, a popular dimensionality reduction technique that maps vectors to a lower dimension usingrandomized linear measurements. The sketch supports recovering $\ell_2$-heavy hitters of a vector (entries with $v[i]^2 \geq \frac{1}{k}\|\boldsymbol{v}\|^2_2$). We show that the classic estimator is not robust, and can be attacked with a number of queries of the order of the sketch size. We propose a robust estimator (for a slightly modified sketch) that allows for quadratic number of queries in the sketch size, which is an improvement factor of $\sqrt{k}$ (for $k$ heavy hitters) over prior "blackbox" approaches.