Session

Deep Learning: SSL/GNN

Ballroom 1 & 2

Moderator: Xiaotian Han

Abstract:

Chat is not available.

Thu 21 July 10:30 - 10:35 PDT

Spotlight
Adversarial Masking for Self-Supervised Learning

Yuge Shi · Siddharth N · Phil Torr · Adam Kosiorek

We propose ADIOS, a masked image model (MIM) framework for self-supervised learning, which simultaneously learns a masking function and an image encoder using an adversarial objective. The image encoder is trained to minimise the distance between representations of the original and that of a masked image. The masking function, conversely, aims at maximising this distance. ADIOS consistently improves on state-of-the-art self-supervised learning (SSL) methods on a variety of tasks and datasets---including classification on ImageNet100 and STL10, transfer learning on CIFAR10/100, Flowers102 and iNaturalist, as well as robustness evaluated on the backgrounds challenge (Xiao et al., 2021)---while generating semantically meaningful masks. Unlike modern MIM models such as MAE, BEiT and iBOT, ADIOS does not rely on the image-patch tokenisation construction of Vision Transformers, and can be implemented with convolutional backbones. We further demonstrate that the masks learned by ADIOS are more effective in improving representation learning of SSL methods than masking schemes used in popular MIM models.

Thu 21 July 10:35 - 10:40 PDT

Spotlight
Provable Stochastic Optimization for Global Contrastive Learning: Small Batch Does Not Harm Performance

Zhuoning Yuan · Yuexin Wu · Zi-Hao Qiu · Xianzhi Du · Lijun Zhang · Denny Zhou · Tianbao Yang

In this paper, we study contrastive learning from an optimization perspective, aiming to analyze and address a fundamental issue of existing contrastive learning methods that either rely on a large batch size or a large dictionary of feature vectors. We consider a global objective for contrastive learning, which contrasts each positive pair with all negative pairs for an anchor point. From the optimization perspective, we explain why existing methods such as SimCLR require a large batch size in order to achieve a satisfactory result. In order to remove such requirement, we propose a memory-efficient Stochastic Optimization algorithm for solving the Global objective of Contrastive Learning of Representations, named SogCLR. We show that its optimization error is negligible under a reasonable condition after a sufficient number of iterations or is diminishing for a slightly different global contrastive objective. Empirically, we demonstrate that SogCLR with small batch size (e.g., 256) can achieve similar performance as SimCLR with large batch size (e.g., 8192) on self-supervised learning task on ImageNet-1K. We also attempt to show that the proposed optimization technique is generic and can be applied to solving other contrastive losses, e.g., two-way contrastive losses for bimodal contrastive learning. The proposed method is implemented in our open-sourced library LibAUC (www.libauc.org).

Thu 21 July 10:40 - 10:45 PDT

Spotlight
OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Peng Wang · An Yang · Rui Men · Junyang Lin · Shuai Bai · Zhikang Li · Jianxin Ma · Chang Zhou · Jingren Zhou · Hongxia Yang

In this work, we pursue a unified paradigm for multimodal pretraining to break the shackles of complex task/modality-specific customization. We propose OFA, a Task-Agnostic and Modality-Agnostic framework that supports Task Comprehensiveness. OFA unifies a diverse set of cross-modal and unimodal tasks, including image generation, visual grounding, image captioning, image classification, language modeling, etc., in a simple sequence-to-sequence learning framework. OFA follows the instruction-based learning in both pretraining and finetuning stages, requiring no extra task-specific layers for downstream tasks. In comparison with the recent state-of-the-art vision & language models that rely on extremely large cross-modal datasets, OFA is pretrained on only 20M publicly available image-text pairs. Despite its simplicity and relatively small-scale training data, OFA achieves new SOTAs in a series of cross-modal tasks while attaining highly competitive performances on uni-modal tasks. Our further analysis indicates that OFA can also effectively transfer to unseen tasks and unseen domains. Our code and models are publicly available at https://github.com/OFA-Sys/OFA.

Thu 21 July 10:45 - 10:50 PDT

Spotlight
Multirate Training of Neural Networks

Tiffany Vlaar · Benedict Leimkuhler

We propose multirate training of neural networks: partitioning neural network parameters into "fast" and "slow" parts which are trained on different time scales, where slow parts are updated less frequently. By choosing appropriate partitionings we can obtain substantial computational speed-up for transfer learning tasks. We show for applications in vision and NLP that we can fine-tune deep neural networks in almost half the time, without reducing the generalization performance of the resulting models. We analyze the convergence properties of our multirate scheme and draw a comparison with vanilla SGD. We also discuss splitting choices for the neural network parameters which could enhance generalization performance when neural networks are trained from scratch. A multirate approach can be used to learn different features present in the data and as a form of regularization. Our paper unlocks the potential of using multirate techniques for neural network training and provides several starting points for future work in this area.

Thu 21 July 10:50 - 10:55 PDT

Spotlight
Variational Wasserstein gradient flow

Jiaojiao Fan · Qinsheng Zhang · Amirhossein Taghvaei · Yongxin Chen

Wasserstein gradient flow has emerged as a promising approach to solve optimization problems over the space of probability distributions. A recent trend is to use the well-known JKO scheme in combination with input convex neural networks to numerically implement the proximal step. The most challenging step, in this setup, is to evaluate functions involving density explicitly, such as entropy, in terms of samples. This paper builds on the recent works with a slight but crucial difference: we propose to utilize a variational formulation of the objective function formulated as maximization over a parametric class of functions. Theoretically, the proposed variational formulation allows the construction of gradient flows directly for empirical distributions with a well-defined and meaningful objective function. Computationally, this approach replaces the computationally expensive step in existing methods, to handle objective functions involving density, with inner loop updates that only require a small batch of samples and scale well with the dimension. The performance and scalability of the proposed method are illustrated with the aid of several numerical experiments involving high-dimensional synthetic and real datasets.

Thu 21 July 10:55 - 11:00 PDT

Spotlight
Building Robust Ensembles via Margin Boosting

Dinghuai Zhang · Hongyang Zhang · Aaron Courville · Yoshua Bengio · Pradeep Ravikumar · Arun Sai Suggala

In the context of adversarial robustness, a single model does not usually have enough power to defend against all possible adversarial attacks, and as a result, has sub-optimal robustness. Consequently, an emerging line of work has focused on learning an ensemble of neural networks to defend against adversarial attacks. In this work, we take a principled approach towards building robust ensembles. We view this problem from the perspective of margin-boosting and develop an algorithm for learning an ensemble with maximum margin. Through extensive empirical evaluation on benchmark datasets, we show that our algorithm not only outperforms existing ensembling techniques, but also large models trained in an end-to-end fashion. An important byproduct of our work is a margin-maximizing cross-entropy (MCE) loss, which is a better alternative to the standard cross-entropy (CE) loss. Empirically, we show that replacing the CE loss in state-of-the-art adversarial training techniques with our MCE loss leads to significant performance improvement.

Thu 21 July 11:00 - 11:05 PDT

Spotlight
Investigating Generalization by Controlling Normalized Margin

Alexander Farhang · Jeremy Bernstein · Kushal Tirumala · Yang Liu · Yisong Yue

Weight norm ‖W‖ and margin γ participate in learning theory via the normalized margin γ/‖W‖. Since standard neural net optimizers do not control normalized margin, it is hard to test whether this quantity causally relates to generalization. This paper designs a series of experimental studies that explicitly control normalized margin and thereby tackle two central questions. First: does normalized margin always have a causal effect on generalization? The paper finds that no—networks can be produced where normalized margin has seemingly no relationship with generalization, counter to the theory of Bartlett et al. (2017). Second: does normalized margin ever have a causal effect on generalization? The paper finds that yes—in a standard training setup, test performance closely tracks normalized margin. The paper suggests a Gaussian process model as a promising explanation for this behavior.

Thu 21 July 11:05 - 11:25 PDT

Oral
Connect, Not Collapse: Explaining Contrastive Learning for Unsupervised Domain Adaptation

Kendrick Shen · Robbie Jones · Ananya Kumar · Sang Michael Xie · Jeff Z. HaoChen · Tengyu Ma · Percy Liang

We consider unsupervised domain adaptation (UDA), where labeled data from a source domain (e.g., photos) and unlabeled data from a target domain (e.g., sketches) are used to learn a classifier for the target domain. Conventional UDA methods (e.g., domain adversarial training) learn domain-invariant features to generalize from the source domain to the target domain. In this paper, we show that contrastive pre-training, which learns features on unlabeled source and target data and then fine-tunes on labeled source data, is competitive with strong UDA methods. However, we find that contrastive pre-training does not learn domain-invariant features, diverging from conventional UDA intuitions. We show theoretically that contrastive pre-training can learn features that vary subtantially across domains but still generalize to the target domain, by disentangling domain and class information. We empirically validate our theory on benchmark vision datasets.

Thu 21 July 11:25 - 11:30 PDT

Spotlight
VLUE: A Multi-Task Multi-Dimension Benchmark for Evaluating Vision-Language Pre-training

Wangchunshu Zhou · Yan Zeng · shizhe diao · Xinsong Zhang

Recent advances in vision-language pre-training (VLP) have demonstrated impressive performance in a range of vision-language (VL) tasks. However, there exist several challenges for measuring the community's progress in building general multi-modal intelligence. First, most of the downstream VL datasets are annotated using raw images that are already seen during pre-training, which may result in an overestimation of current VLP models' generalization ability. Second, recent VLP work mainly focuses on absolute performance but overlooks the efficiency-performance trade-off, which is also an important indicator for measuring progress.To this end, we introduce the Vision-Language Understanding Evaluation (VLUE) benchmark, a multi-task multi-dimension benchmark for evaluating the generalization capabilities and the efficiency-performance trade-off (``Pareto SOTA'') of VLP models.We demonstrate that there is a sizable generalization gap for all VLP models when testing on out-of-distribution test sets annotated on images from a more diverse distribution that spreads across cultures.Moreover, we find that measuring the efficiency-performance trade-off of VLP models leads to complementary insights for several design choices of VLP.We release the VLUE benchmark to promote research on building vision-language models that generalize well to images unseen during pre-training and are practical in terms of efficiency-performance trade-off.

Thu 21 July 11:30 - 11:35 PDT

Spotlight
Let Invariant Rationale Discovery Inspire Graph Contrastive Learning

Sihang Li · Xiang Wang · An Zhang · Ying-Xin Wu · Xiangnan He · Tat-Seng Chua

Leading graph contrastive learning (GCL) methods perform graph augmentations in two fashions: (1) randomly corrupting the anchor graph, which could cause the loss of semantic information, or (2) using domain knowledge to maintain salient features, which undermines the generalization to other domains. Taking an invariance look at GCL, we argue that a high-performing augmentation should preserve the salient semantics of anchor graphs regarding instance-discrimination.To this end, we relate GCL with invariant rationale discovery, and propose a new framework, Rationale-aware Graph Contrastive Learning (RGCL). Specifically, without supervision signals, RGCL uses a rationale generator to reveal salient features about graph instance-discrimination as the rationale, and then creates rationale-aware views for contrastive learning. This rationale-aware pre-training scheme endows the backbone model with the powerful representation ability, further facilitating the fine-tuning on downstream tasks. On MNIST-Superpixel and MUTAG datasets, visual inspections on the discovered rationales showcase that the rationale generator successfully captures the salient features (\ie distinguishing semantic nodes in graphs). On biochemical molecule and social network benchmark datasets, the state-of-the-art performance of RGCL demonstrates the effectiveness of rationale-aware views for contrastive learning. Our codes are available at https://github.com/lsh0520/RGCL.

Thu 21 July 11:35 - 11:40 PDT

Spotlight
Graph Neural Architecture Search Under Distribution Shifts

Yijian Qin · Xin Wang · Ziwei Zhang · Pengtao Xie · Wenwu Zhu

Graph neural architecture search has shown great potentials for automatically designing graph neural network (GNN) architectures for graph classification tasks. However, when there is a distribution shift between training and testing graphs, the existing approaches fail to deal with the problem of adapting to unknown test graph structures since they only search for a fixed architecture for all graphs. To solve this problem, we propose a novel GRACES model which is able to generalize under distribution shifts through tailoring a customized GNN architecture suitable for each graph instance with unknown distribution. Specifically, we design a self-supervised disentangled graph encoder to characterize invariant factors hidden in diverse graph structures. Then, we propose a prototype-based architecture customization strategy to generate the most suitable GNN architecture weights in a continuous space for each graph instance. We further propose a customized super-network to share weights among different architectures for the sake of efficient training. Extensive experiments on both synthetic and real-world datasets demonstrate that our proposed GRACES model can adapt to diverse graph structures and achieve state-of-the-art performance for graph classification tasks under distribution shifts.

Thu 21 July 11:40 - 11:45 PDT

Spotlight
How Powerful are Spectral Graph Neural Networks

Xiyuan Wang · Muhan Zhang

Spectral Graph Neural Network is a kind of Graph Neural Network (GNN) based on graph signal filters. Some models able to learn arbitrary spectral filters have emerged recently. However, few works analyze the expressive power of spectral GNNs. This paper studies spectral GNNs’ expressive power theoretically. We first prove that even spectral GNNs without nonlinearity can produce arbitrary graph signals and give two conditions for reaching universality. They are: 1) no multiple eigenvalues of graph Laplacian, and 2) no missing frequency components in node features. We also establish a connection between the expressive power of spectral GNNs and Graph Isomorphism (GI) testing, the latter of which is often used to characterize spatial GNNs’ expressive power. Moreover, we study the difference in empirical performance among different spectral GNNs with the same expressive power from an optimization perspective, and motivate the use of an orthogonal basis whose weight function corresponds to the graph signal density in the spectrum. Inspired by the analysis, we propose JacobiConv, which uses Jacobi basis due to its orthogonality and flexibility to adapt to a wide range of weight functions. JacobiConv deserts nonlinearity while outperforming all baselines on both synthetic and real-world datasets.

Thu 21 July 11:45 - 11:50 PDT

Spotlight
Constraint-based graph network simulator

Yulia Rubanova · Alvaro Sanchez-Gonzalez · Tobias Pfaff · Peter Battaglia

In the area of physical simulations, nearly all neural-network-based methods directly predict future states from the input states. However, many traditional simulation engines instead model the constraints of the system and select the state which satisfies them. Here we present a framework for constraint-based learned simulation, where a scalar constraint function is implemented as a graph neural network, and future predictions are computed by solving the optimization problem defined by the learned constraint. Our model achieves comparable or better accuracy to top learned simulators on a variety of challenging physical domains, and offers several unique advantages. We can improve the simulation accuracy on a larger system by applying more solver iterations at test time. We also can incorporate novel hand-designed constraints at test time and simulate new dynamics which were not present in the training data. Our constraint-based framework shows how key techniques from traditional simulation and numerical methods can be leveraged as inductive biases in machine learning simulators.

Thu 21 July 11:50 - 11:55 PDT

Spotlight
PACE: A Parallelizable Computation Encoder for Directed Acyclic Graphs

Zehao Dong · Muhan Zhang · Fuhai Li · Yixin Chen

Optimization of directed acyclic graph (DAG) structures has many applications, such as neural architecture search (NAS) and probabilistic graphical model learning. Encoding DAGs into real vectors is a dominant component in most neural-network-based DAG optimization frameworks.Currently, most popular DAG encoders use an asynchronous message passing scheme which sequentially processes nodes according to the dependency between nodes in a DAG. That is, a node must not be processed until all its predecessors are processed. As a result, they are inherently not parallelizable. In this work, we propose a Parallelizable Attention-based Computation structure Encoder (PACE) that processes nodes simultaneously and encodes DAGs in parallel. We demonstrate the superiority of PACE through encoder-dependent optimization subroutines that search the optimal DAG structure based on the learned DAG embeddings. Experiments show that PACE not only improves the effectiveness over previous sequential DAG encoders with a significantly boosted training and inference speed, but also generates smooth latent (DAG encoding) spaces that are beneficial to downstream optimization subroutines.

Thu 21 July 11:55 - 12:00 PDT

Spotlight
Structure-Aware Transformer for Graph Representation Learning

Dexiong Chen · Leslie O'Bray · Karsten Borgwardt

The Transformer architecture has gained growing attention in graph representation learning recently, as it naturally overcomes several limitations of graph neural networks (GNNs) by avoiding their strict structural inductive biases and instead only encoding the graph structure via positional encoding. Here, we show that the node representations generated by the Transformer with positional encoding do not necessarily capture structural similarity between them. To address this issue, we propose the Structure-Aware Transformer, a class of simple and flexible graph Transformers built upon a new self-attention mechanism. This new self-attention incorporates structural information into the original self-attention by extracting a subgraph representation rooted at each node before computing the attention. We propose several methods for automatically generating the subgraph representation and show theoretically that the resulting representations are at least as expressive as the subgraph representations. Empirically, our method achieves state-of-the-art performance on five graph prediction benchmarks. Our structure-aware framework can leverage any existing GNN to extract the subgraph representation, and we show that it systematically improves performance relative to the base GNN model, successfully combining the advantages of GNNs and Transformers. Our code is available at https://github.com/BorgwardtLab/SAT.