Reinforcement Learning

Hall G

Moderator : Marcello Restelli

Wed 20 Jul 1:30 p.m. PDT — 3:05 p.m. PDT


Chat is not available.

Wed 20 July 13:30 - 13:35 PDT

Greedy based Value Representation for Optimal Coordination in Multi-agent Reinforcement Learning

Lipeng Wan · Zeyang Liu · Xingyu Chen · Xuguang Lan · Nanning Zheng

Due to the representation limitation of the joint Q value function, multi-agent reinforcement learning methods with linear value decomposition (LVD) or monotonic value decomposition (MVD) suffer from relative overgeneralization. As a result, they can not ensure optimal consistency (i.e., the correspondence between individual greedy actions and the best team performance). In this paper, we derive the expression of the joint Q value function of LVD and MVD. According to the expression, we draw a transition diagram, where each self-transition node (STN) is a possible convergence. To ensure the optimal consistency, the optimal node is required to be the unique STN. Therefore, we propose the greedy-based value representation (GVR), which turns the optimal node into an STN via inferior target shaping and eliminates the non-optimal STNs via superior experience replay. Theoretical proofs and empirical results demonstrate that given the true Q values, GVR ensures the optimal consistency under sufficient exploration. Besides, in tasks where the true Q values are unavailable, GVR achieves an adaptive trade-off between optimality and stability. Our method outperforms state-of-the-art baselines in experiments on various benchmarks.

Wed 20 July 13:35 - 13:40 PDT

Bayesian Nonparametrics for Offline Skill Discovery

Valentin Villecroze · Harry Braviner · Panteha Naderian · Chris Maddison · Gabriel Loaiza-Ganem

Skills or low-level policies in reinforcement learning are temporally extended actions that can speed up learning and enable complex behaviours. Recent work in offline reinforcement learning and imitation learning has proposed several techniques for skill discovery from a set of expert trajectories. While these methods are promising, the number K of skills to discover is always a fixed hyperparameter, which requires either prior knowledge about the environment or an additional parameter search to tune it. We first propose a method for offline learning of options (a particular skill framework) exploiting advances in variational inference and continuous relaxations. We then highlight an unexplored connection between Bayesian nonparametrics and offline skill discovery, and show how to obtain a nonparametric version of our model. This version is tractable thanks to a carefully structured approximate posterior with a dynamically-changing number of options, removing the need to specify K. We also show how our nonparametric extension can be applied in other skill frameworks, and empirically demonstrate that our method can outperform state-of-the-art offline skill learning algorithms across a variety of environments.

Wed 20 July 13:40 - 13:45 PDT

Convergence of Policy Gradient for Entropy Regularized MDPs with Neural Network Approximation in the Mean-Field Regime

James-Michael Leahy · Bekzhan Kerimkulov · David Siska · Lukasz Szpruch

We study the global convergence of policy gradient for infinite-horizon, continuous state and action space, and entropy-regularized Markov decision processes (MDPs). We consider a softmax policy with (one-hidden layer) neural network approximation in a mean-field regime. Additional entropic regularization in the associated mean-field probability measure is added, and the corresponding gradient flow is studied in the 2-Wasserstein metric. We show that the objective function is increasing along the gradient flow.Further, we prove that if the regularization in terms of the mean-field measure is sufficient, the gradient flow converges exponentially fast to the unique stationary solution, which is the unique maximizer of the regularized MDP objective. Lastly, we study the sensitivity of the value function along the gradient flow with respect to regularization parameters and the initial condition. Our results rely on the careful analysis of the non-linear Fokker--Planck--Kolmogorov equation and extend the pioneering work of \cite{mei2020global} and \cite{agarwal2020optimality}, which quantify the global convergence rate of policy gradient for entropy-regularized MDPs in the tabular setting.

Wed 20 July 13:45 - 13:50 PDT

Curriculum Reinforcement Learning via Constrained Optimal Transport

Pascal Klink · Haoyi Yang · Carlo D'Eramo · Jan Peters · Joni Pajarinen

Curriculum reinforcement learning (CRL) allows solving complex tasks by generating a tailored sequence of learning tasks, starting from easy ones and subsequently increasing their difficulty. Although the potential of curricula in RL has been clearly shown in a variety of works, it is less clear how to generate them for a given learning environment, resulting in a variety of methods aiming to automate this task. In this work, we focus on the idea of framing curricula as interpolations between task distributions, which has previously been shown to be a viable approach to CRL. Identifying key issues of existing methods, we frame the generation of a curriculum as a constrained optimal transport problem between task distributions. Benchmarks show that this way of curriculum generation can improve upon existing CRL methods, yielding high performance in a variety of tasks with different characteristics.

Wed 20 July 13:50 - 13:55 PDT

Recurrent Model-Free RL Can Be a Strong Baseline for Many POMDPs

Tianwei Ni · Benjamin Eysenbach · Ruslan Salakhutdinov

Many problems in RL, such as meta-RL, robust RL, generalization in RL, and temporal credit assignment, can be cast as POMDPs. In theory, simply augmenting model-free RL with memory-based architectures, such as recurrent neural networks, provides a general approach to solving all types of POMDPs. However, prior work has found that such recurrent model-free RL methods tend to perform worse than more specialized algorithms that are designed for specific types of POMDPs. This paper revisits this claim. We find that careful architecture and hyperparameter decisions can often yield a recurrent model-free implementation that performs on par with (and occasionally substantially better than) more sophisticated recent techniques. We compare to 21 environments from 6 prior specialized methods and find that our implementation achieves greater sample efficiency and asymptotic performance than these methods on 18/21 environments. We also release a simple and efficient implementation of recurrent model-free RL for future work to use as a baseline for POMDPs.

Wed 20 July 13:55 - 14:00 PDT

Stabilizing Q-learning with Linear Architectures for Provable Efficient Learning

Andrea Zanette · Martin Wainwright

The Q-learning algorithm is a simple, fundamental and practically very effective reinforcement learning algorithm. However, the basic protocol can exhibit an unstable behavior when implemented even with simple linear function approximation. While tools like target networks and experience replayare often implemented to stabilize the learning process, the individual contribution of each of these mechanisms is not well understood theoretically.This work proposes an exploration variant of the basicQ-learning protocol with linear function approximation. Our modular analysis illustrates the role played by each algorithmic tool that we adopt:a second order update rule,a set of target networks, and a mechanism akin to experience replay.Together, they enable state of the art regret bounds on linear MDPs while preserving the most prominent feature of the algorithm, namely a space complexity independent of the number of steps elapsed. Furthermore, we show that the performance of the algorithm degrades very gracefully under a new, more permissive notion of approximation error. Finally, the algorithm partially inherits problem dependent regret bounds,function of the number of `effective' feature dimension.

Wed 20 July 14:00 - 14:05 PDT

Constrained Offline Policy Optimization

Nicholas Polosky · Bruno C. da Silva · Madalina Fiterau · Jithin Jagannath

In this work we introduce Constrained Offline Policy Optimization (COPO), an offline policy optimization algorithm for learning in MDPs with cost constraints. COPO is built upon a novel offline cost-projection method, which we formally derive and analyze. Our method improves upon the state-of-the-art in offline constrained policy optimization by explicitly accounting for distributional shift and by offering non-asymptotic confidence bounds on the cost of a policy. These formal properties are superior to those of existing techniques, which only guarantee convergence to a point estimate. We formally analyze our method and empirically demonstrate that it achieves state-of-the-art performance on discrete and continuous control problems, while offering the aforementioned improved, stronger, and more robust theoretical guarantees.

Wed 20 July 14:05 - 14:25 PDT

Causal Dynamics Learning for Task-Independent State Abstraction

Zizhao Wang · Xuesu Xiao · Zifan Xu · Yuke Zhu · Peter Stone

Learning dynamics models accurately is an important goal for Model-Based Reinforcement Learning (MBRL), but most MBRL methods learn a dense dynamics model which is vulnerable to spurious correlations and therefore generalizes poorly to unseen states. In this paper, we introduce Causal Dynamics Learning for Task-Independent State Abstraction (CDL), which first learns a theoretically proved causal dynamics model that removes unnecessary dependencies between state variables and the action, thus generalizing well to unseen states. A state abstraction can then be derived from the learned dynamics, which not only improves sample efficiency but also applies to a wider range of tasks than existing state abstraction methods. Evaluated on two simulated environments and downstream tasks, both the dynamics model and policies learned by the proposed method generalize well to unseen states and the derived state abstraction improves sample efficiency compared to learning without it.

Wed 20 July 14:25 - 14:30 PDT

Leveraging Approximate Symbolic Models for Reinforcement Learning via Skill Diversity

Lin Guan · Sarath Sreedharan · Subbarao Kambhampati

Creating reinforcement learning (RL) agents that are capable of accepting and leveraging task-specific knowledge from humans has been long identified as a possible strategy for developing scalable approaches for solving long-horizon problems. While previous works have looked at the possibility of using symbolic models along with RL approaches, they tend to assume that the high-level action models are executable at low level and the fluents can exclusively characterize all desirable MDP states. Symbolic models of real world tasks are however often incomplete. To this end, we introduce Approximate Symbolic-Model Guided Reinforcement Learning, wherein we will formalize the relationship between the symbolic model and the underlying MDP that will allow us to characterize the incompleteness of the symbolic model. We will use these models to extract high-level landmarks that will be used to decompose the task. At the low level, we learn a set of diverse policies for each possible task subgoal identified by the landmark, which are then stitched together. We evaluate our system by testing on three different benchmark domains and show how even with incomplete symbolic model information, our approach is able to discover the task structure and efficiently guide the RL agent towards the goal.

Wed 20 July 14:30 - 14:35 PDT

Reinforcement Learning with Action-Free Pre-Training from Videos

Younggyo Seo · Kimin Lee · Stephen James · Pieter Abbeel

Recent unsupervised pre-training methods have shown to be effective on language and vision domains by learning useful representations for multiple downstream tasks. In this paper, we investigate if such unsupervised pre-training methods can also be effective for vision-based reinforcement learning (RL). To this end, we introduce a framework that learns representations useful for understanding the dynamics via generative pre-training on videos. Our framework consists of two phases: we pre-train an action-free latent video prediction model, and then utilize the pre-trained representations for efficiently learning action-conditional world models on unseen environments. To incorporate additional action inputs during fine-tuning, we introduce a new architecture that stacks an action-conditional latent prediction model on top of the pre-trained action-free prediction model. Moreover, for better exploration, we propose a video-based intrinsic bonus that leverages pre-trained representations. We demonstrate that our framework significantly improves both final performances and sample-efficiency of vision-based RL in a variety of manipulation and locomotion tasks. Code is available at \url{}.

Wed 20 July 14:35 - 14:40 PDT

Towards Evaluating Adaptivity of Model-Based Reinforcement Learning Methods

Yi Wan · Ali Rahimi-Kalahroudi · Janarthanan Rajendran · Ida Momennejad · Sarath Chandar · Harm van Seijen

In recent years, a growing number of deep model-based reinforcement learning (RL) methods have been introduced. The interest in deep model-based RL is not surprising, given its many potential benefits, such as higher sample efficiency and the potential for fast adaption to changes in the environment. However, we demonstrate, using an improved version of the recently introduced Local Change Adaptation (LoCA) setup, that well-known model-based methods such as PlaNet and DreamerV2 perform poorly in their ability to adapt to local environmental changes. Combined with prior work that made a similar observation about the other popular model-based method, MuZero, a trend appears to emerge, suggesting that current deep model-based methods have serious limitations. We dive deeper into the causes of this poor performance, by identifying elements that hurt adaptive behavior and linking these to underlying techniques frequently used in deep model-based RL. We empirically validate these insights in the case of linear function approximation by demonstrating that a modified version of linear Dyna achieves effective adaptation to local changes. Furthermore, we provide detailed insights into the challenges of building an adaptive nonlinear model-based method, by experimenting with a nonlinear version of Dyna.

Wed 20 July 14:40 - 14:45 PDT

Delayed Reinforcement Learning by Imitation

Pierre Liotet · Davide Maran · Lorenzo Bisi · Marcello Restelli

When the agent's observations or interactions are delayed, classic reinforcement learning tools usually fail. In this paper, we propose a simple yet new and efficient solution to this problem. We assume that, in the undelayed environment, an efficient policy is known or can be easily learnt, but the task may suffer from delays in practice and we thus want to take them into account. We present a novel algorithm, Delayed Imitation with Dataset Aggregation (DIDA), which builds upon imitation learning methods to learn how to act in a delayed environment from undelayed demonstrations. We provide a theoretical analysis of the approach that will guide the practical design of DIDA. These results are also of general interest in the delayed reinforcement learning literature by providing bounds on the performance between delayed and undelayed tasks, under smoothness conditions. We show empirically that DIDA obtains high performances with a remarkable sample efficiency on a variety of tasks, including robotic locomotion, classic control, and trading.

Wed 20 July 14:45 - 14:50 PDT

Reachability Constrained Reinforcement Learning

Dongjie Yu · Haitong Ma · Shengbo Li · Jianyu Chen

Constrained reinforcement learning (CRL) has gained significant interest recently, since safety constraints satisfaction is critical for real-world problems. However, existing CRL methods constraining discounted cumulative costs generally lack rigorous definition and guarantee of safety. In contrast, in the safe control research, safety is defined as persistently satisfying certain state constraints. Such persistent safety is possible only on a subset of the state space, called feasible set, where an optimal largest feasible set exists for a given environment. Recent studies incorporate feasible sets into CRL with energy-based methods such as control barrier function (CBF), safety index (SI), and leverage prior conservative estimations of feasible sets, which harms the performance of the learned policy. To deal with this problem, this paper proposes the reachability CRL (RCRL) method by using reachability analysis to establish the novel self-consistency condition and characterize the feasible sets. The feasible sets are represented by the safety value function, which is used as the constraint in CRL. We use the multi-time scale stochastic approximation theory to prove that the proposed algorithm converges to a local optimum, where the largest feasible set can be guaranteed. Empirical results on different benchmarks validate the learned feasible set, the policy performance, and constraint satisfaction of RCRL, compared to CRL and safe control baselines.

Wed 20 July 14:50 - 14:55 PDT

Adaptive Model Design for Markov Decision Process

Siyu Chen · Donglin Yang · Jiayang Li · Senmiao Wang · Zhuoran Yang · Zhaoran Wang

In a Markov decision process (MDP), an agent interacts with the environment via perceptions and actions. During this process, the agent aims to maximize its own gain. Hence, appropriate regulations are often required, if we hope to take the external costs/benefits of its actions into consideration. In this paper, we study how to regulate such an agent by redesigning model parameters that can affect the rewards and/or the transition kernels. We formulate this problem as a bilevel program, in which the lower-level MDP is regulated by the upper-level model designer. To solve the resulting problem, we develop a scheme that allows the designer to iteratively predict the agent's reaction by solving the MDP and then adaptively update model parameters based on the predicted reaction. The algorithm is first theoretically analyzed and then empirically tested on several MDP models arising in economics and robotics.

Wed 20 July 14:55 - 15:00 PDT

Goal Misgeneralization in Deep Reinforcement Learning

Lauro Langosco di Langosco · Jack Koch · Lee Sharkey · Jacob Pfau · David Krueger

We study \emph{goal misgeneralization}, a type of out-of-distribution robustness failure in reinforcement learning (RL). Goal misgeneralization occurs when an RL agent retains its capabilities out-of-distribution yet pursues the wrong goal. For instance, an agent might continue to competently avoid obstacles, but navigate to the wrong place. In contrast, previous works have typically focused on capability generalization failures, where an agent fails to do anything sensible at test time.We provide the first explicit empirical demonstrations of goal misgeneralization and present a partial characterization of its causes.

Wed 20 July 15:00 - 15:05 PDT

Translating Robot Skills: Learning Unsupervised Skill Correspondences Across Robots

Tanmay Shankar · Yixin Lin · Aravind Rajeswaran · Vikash Kumar · Stuart Anderson · Jean Oh

In this paper, we explore how we can endow robots with the ability to learn correspondences between their own skills, and those of morphologically different robots in different domains, in an entirely unsupervised manner. We make the insight that different morphological robots use similar task strategies to solve similar tasks. Based on this insight, we frame learning skill correspondences as a problem of matching distributions of sequences of skills across robots. We then present an unsupervised objective that encourages a learnt skill translation model to match these distributions across domains, inspired by recent advances in unsupervised machine translation. Our approach is able to learn semantically meaningful correspondences between skills across multiple robot-robot and human-robot domain pairs despite being completely unsupervised. Further, the learnt correspondences enable the transfer of task strategies across robots and domains. We present dynamic visualizations of our results at