Deep Learning

Ballroom 1 & 2

Moderator : Kyunghyun Cho

Wed 20 Jul 1:30 p.m. PDT — 3 p.m. PDT


Chat is not available.

Wed 20 July 13:30 - 13:35 PDT

$p$-Laplacian Based Graph Neural Networks

Guoji Fu · Peilin Zhao · Yatao Bian

Graph neural networks (GNNs) have demonstrated superior performance for semi-supervised node classification on graphs, as a result of their ability to exploit node features and topological information simultaneously. However, most GNNs implicitly assume that the labels of nodes and their neighbors in a graph are the same or consistent, which does not hold in heterophilic graphs, where the labels of linked nodes are likely to differ. Moreover, when the topology is non-informative for label prediction, ordinary GNNs may work significantly worse than simply applying multi-layer perceptrons (MLPs) on each node. To tackle the above problem, we propose a new $p$-Laplacian based GNN model, termed as $^p$GNN, whose message passing mechanism is derived from a discrete regularization framework and could be theoretically explained as an approximation of a polynomial graph filter defined on the spectral domain of $p$-Laplacians. The spectral analysis shows that the new message passing mechanism works as low-high-pass filters, thus making $^p$GNNs are effective on both homophilic and heterophilic graphs. Empirical studies on real-world and synthetic datasets validate our findings and demonstrate that $^p$GNNs significantly outperform several state-of-the-art GNN architectures on heterophilic benchmarks while achieving competitive performance on homophilic benchmarks. Moreover, $^p$GNNs can adaptively learn aggregation weights and are robust to noisy edges.

Wed 20 July 13:35 - 13:40 PDT

Equivariant Quantum Graph Circuits

Peter Mernyei · Konstantinos Meichanetzidis · Ismail Ceylan

We investigate quantum circuits for graph representation learning, and propose equivariant quantum graph circuits (EQGCs), as a class of parameterized quantum circuits with strong relational inductive bias for learning over graph-structured data. Conceptually, EQGCs serve as a unifying framework for quantum graph representation learning, allowing us to define several interesting subclasses which subsume existing proposals. In terms of the representation power, we prove that the studied subclasses of EQGCs are universal approximators for functions over the bounded graph domain. This theoretical perspective on quantum graph machine learning methods opens many directions for further work, and could lead to models with capabilities beyond those of classical approaches. We empirically verify the expressive power of EQGCs through a dedicated experiment on synthetic data, and additionally observe that the performance of EQGCs scales well with the depth of the model and does not suffer from barren plateu issues.

Wed 20 July 13:40 - 13:45 PDT

A Theoretical Comparison of Graph Neural Network Extensions

Pál András Papp · Roger Wattenhofer

We study and compare different Graph Neural Network extensions that increase the expressive power of GNNs beyond the Weisfeiler-Leman test. We focus on (i) GNNs based on higher order WL methods, (ii) GNNs that preprocess small substructures in the graph, (iii) GNNs that preprocess the graph up to a small radius, and (iv) GNNs that slightly perturb the graph to compute an embedding. We begin by presenting a simple improvement for this last extension that strictly increases the expressive power of this GNN variant. Then, as our main result, we compare the expressiveness of these extensions to each other through a series of example constructions that can be distinguished by one of the extensions, but not by another one. We also show negative examples that are particularly challenging for each of the extensions, and we prove several claims about the ability of these extensions to count cliques and cycles in the graph.

Wed 20 July 13:45 - 13:50 PDT

Variational On-the-Fly Personalization

Jangho Kim · Jun-Tae Lee · Simyung Chang · NOJUN KWAK

With the development of deep learning (DL) technologies, the demand for DL-based services on personal devices, such as mobile phones, also increases rapidly. In this paper, we propose a novel personalization method, Variational On-the-Fly Personalization. Compared to the conventional personalization methods that require additional fine-tuning with personal data, the proposed method only requires forwarding a handful of personal data on-the-fly. Assuming even a single personal data can convey the characteristics of a target person, we develop the variational hyper-personalizer to capture the weight distribution of layers that fits the target person. In the testing phase, the hyper-personalizer estimates the model's weights on-the-fly based on personality by forwarding only a small amount of (even a single) personal enrollment data. Hence, the proposed method can perform the personalization without any training software platform and additional cost in the edge device. In experiments, we show our approach can effectively generate reliable personalized models via forwarding (not back-propagating) a handful of samples.

Wed 20 July 13:50 - 13:55 PDT

Deep symbolic regression for recurrence prediction

Stéphane d'Ascoli · Pierre-Alexandre Kamienny · Guillaume Lample · Francois Charton

Symbolic regression, i.e. predicting a function from the observation of its values, is well-known to be a challenging task. In this paper, we train Transformers to infer the function or recurrence relation underlying sequences of integers or floats, a typical task in human IQ tests which has hardly been tackled in the machine learning literature. We evaluate our integer model on a subset of OEIS sequences, and show that it outperforms built-in Mathematica functions for recurrence prediction. We also demonstrate that our float model is able to yield informative approximations of out-of-vocabulary functions and constants, e.g. $\operatorname{bessel0}(x)\approx \frac{\sin(x)+\cos(x)}{\sqrt{\pi x}}$ and $1.644934\approx \pi^2/6$.

Wed 20 July 13:55 - 14:00 PDT

Geometric Multimodal Contrastive Representation Learning

Petra Poklukar · Miguel Vasco · Hang Yin · Francisco S. Melo · Ana Paiva · Danica Kragic

Learning representations of multimodal data that are both informative and robust to missing modalities at test time remains a challenging problem due to the inherent heterogeneity of data obtained from different channels. To address it, we present a novel Geometric Multimodal Contrastive (GMC) representation learning method consisting of two main components: i) a two-level architecture consisting of modality-specific base encoders, allowing to process an arbitrary number of modalities to an intermediate representation of fixed dimensionality, and a shared projection head, mapping the intermediate representations to a latent representation space; ii) a multimodal contrastive loss function that encourages the geometric alignment of the learned representations. We experimentally demonstrate that GMC representations are semantically rich and achieve state-of-the-art performance with missing modality information on three different learning problems including prediction and reinforcement learning tasks.

Wed 20 July 14:00 - 14:05 PDT

Universality of Winning Tickets: A Renormalization Group Perspective

William T. Redman · Tianlong Chen · Zhangyang “Atlas” Wang · Akshunna S. Dogra

Foundational work on the Lottery Ticket Hypothesis has suggested an exciting corollary: winning tickets found in the context of one task can be transferred to similar tasks, possibly even across different architectures. This has generated broad interest, but methods to study this universality are lacking. We make use of renormalization group theory, a powerful tool from theoretical physics, to address this need. We find that iterative magnitude pruning, the principal algorithm used for discovering winning tickets, is a renormalization group scheme, and can be viewed as inducing a flow in parameter space. We demonstrate that ResNet-50 models with transferable winning tickets have flows with common properties, as would be expected from the theory. Similar observations are made for BERT models, with evidence that their flows are near fixed points. Additionally, we leverage our framework to study winning tickets transferred across ResNet architectures, observing that smaller models have flows with more uniform properties than larger models, complicating transfer between them.

Wed 20 July 14:05 - 14:25 PDT

Partial and Asymmetric Contrastive Learning for Out-of-Distribution Detection in Long-Tailed Recognition

Haotao Wang · Aston Zhang · Yi Zhu · Shuai Zheng · Mu Li · Alex Smola · Zhangyang “Atlas” Wang

Existing out-of-distribution (OOD) detection methods are typically benchmarked on training sets with balanced class distributions. However, in real-world applications, it is common for the training sets to have long-tailed distributions. In this work, we first demonstrate that existing OOD detection methods commonly suffer from significant performance degradation when the training set is long-tail distributed. Through analysis, we posit that this is because the models struggle to distinguish the minority tail-class in-distribution samples, from the true OOD samples, making the tail classes more prone to be falsely detected as OOD. To solve this problem, we propose Partial and Asymmetric Supervised Contrastive Learning (PASCL), which explicitly encourages the model to distinguish between tail-class in-distribution samples and OOD samples. To further boost in-distribution classification accuracy, we propose Auxiliary Branch Finetuning, which uses two separate branches of BN and classification layers for anomaly detection and in-distribution classification, respectively. The intuition is that in-distribution and OOD anomaly data have different underlying distributions. Our method outperforms previous state-of-the-art method by $1.29\%$, $1.45\%$, $0.69\%$ anomaly detection false positive rate (FPR) and $3.24\%$, $4.06\%$, $7.89\%$ in-distribution classification accuracy on CIFAR10-LT, CIFAR100-LT, and ImageNet-LT, respectively. Code and pre-trained models are available at

Wed 20 July 14:25 - 14:30 PDT

Loss Function Learning for Domain Generalization by Implicit Gradient

Boyan Gao · Henry Gouk · Yongxin Yang · Timothy Hospedales

Generalising robustly to distribution shift is a major challenge that is pervasive across most real-world applications of machine learning. A recent study highlighted that many advanced algorithms proposed to tackle such domain generalisation (DG) fail to outperform a properly tuned empirical risk minimisation (ERM) baseline. We take a different approach, and explore the impact of the ERM loss function on out-of-domain generalisation. In particular, we introduce a novel meta-learning approach to loss function search based on implicit gradient. This enables us to discover a general purpose parametric loss function that provides a drop-in replacement for cross-entropy. Our loss can be used in standard training pipelines to efficiently train robust models using any neural architecture on new datasets. The results show that it clearly surpasses cross-entropy, enables simple ERM to outperform some more complicated prior DG methods, and provides state-of-the-art performance across a variety of DG benchmarks. Furthermore, unlike most existing DG approaches, our setup applies to the most practical setting of single-source domain generalisation, on which we show significant improvement.

Wed 20 July 14:30 - 14:35 PDT

GraphFM: Improving Large-Scale GNN Training via Feature Momentum

Haiyang Yu · Limei Wang · Bokun Wang · Meng Liu · Tianbao Yang · Shuiwang Ji

Training of graph neural networks (GNNs) for large-scale node classification is challenging. A key difficulty lies in obtaining accurate hidden node representations while avoiding the neighborhood explosion problem. Here, we propose a new technique, named feature momentum (FM), that uses a momentum step to incorporate historical embeddings when updating feature representations. We develop two specific algorithms, known as GraphFM-IB and GraphFM-OB, that consider in-batch and out-of-batch data, respectively.GraphFM-IB applies FM to in-batch sampled data, while GraphFM-OB applies FM to out-of-batch data that are 1-hop neighborhood of in-batch data.We provide a convergence analysis for GraphFM-IB and some theoretical insight for GraphFM-OB. Empirically, we observe that GraphFM-IB can effectively alleviate the neighborhood explosion problem of existing methods. In addition, GraphFM-OB achieves promising performance on multiple large-scale graph datasets.

Wed 20 July 14:35 - 14:40 PDT

Generalization Guarantee of Training Graph Convolutional Networks with Graph Topology Sampling

Hongkang Li · Meng Wang · Sijia Liu · Pin-Yu Chen · Jinjun Xiong

Graph convolutional networks (GCNs) have recently achieved great empirical success in learning graph-structured data. To address its scalability issue due to the recursive embedding of neighboring features, graph topology sampling has been proposed to reduce the memory and computational cost of training GCNs, and it has achieved comparable test performance to those without topology sampling in many empirical studies. To the best of our knowledge, this paper provides the first theoretical justification of graph topology sampling in training (up to) three-layer GCNs for semi-supervised node classification. We formally characterize some sufficient conditions on graph topology sampling such that GCN training leads to diminishing generalization error. Moreover, our method tackles the non-convex interaction of weights across layers, which is under-explored in the existing theoretical analyses of GCNs. This paper characterizes the impact of graph structures and topology sampling on the generalization performance and sample complexity explicitly, and the theoretical findings are also justified through numerical experiments.

Wed 20 July 14:40 - 14:45 PDT

A Differential Entropy Estimator for Training Neural Networks

Georg Pichler · Pierre Colombo · Malik Boudiaf · Günther Koliander · Pablo Piantanida

Mutual Information (MI) has been widely used as a loss regularizer for training neural networks. This has been particularly effective when learn disentangled or compressed representations of high dimensional data. However, differential entropy (DE), another fundamental measure of information, has not found widespread use in neural network training. Although DE offers a potentially wider range of applications than MI, off-the-shelf DE estimators are either non differentiable, computationally intractable or fail to adapt to changes in the underlying distribution. These drawbacks prevent them from being used as regularizers in neural networks training. To address shortcomings in previously proposed estimators for DE, here we introduce KNIFE, a fully parameterized, differentiable kernel-based estimator of DE. The flexibility of our approach also allows us to construct KNIFE-based estimators for conditional (on either discrete or continuous variables) DE, as well as MI. We empirically validate our method on high-dimensional synthetic data and further apply it to guide the training of neural networks for real-world tasks. Our experiments on a large variety of tasks, including visual domain adaptation, textual fair classification, and textual fine-tuning demonstrate the effectiveness of KNIFE-based estimation. Code can be found at

Wed 20 July 14:45 - 14:50 PDT

Scaling Out-of-Distribution Detection for Real-World Settings

Dan Hendrycks · Steven Basart · Mantas Mazeika · Andy Zou · joseph kwon · Mohammadreza Mostajabi · Jacob Steinhardt · Dawn Song

Detecting out-of-distribution examples is important for safety-critical machine learning applications such as detecting novel biological phenomena and self-driving cars. However, existing research mainly focuses on simple small-scale settings. To set the stage for more realistic out-of-distribution detection, we depart from small-scale settings and explore large-scale multiclass and multi-label settings with high-resolution images and thousands of classes. To make future work in real-world settings possible, we create new benchmarks for three large-scale settings. To test ImageNet multiclass anomaly detectors, we introduce the Species dataset containing over 700,000 images and over a thousand anomalous species. We leverage ImageNet-21K to evaluate PASCAL VOC and COCO multilabel anomaly detectors. Third, we introduce a new benchmark for anomaly segmentation by introducing a segmentation benchmark with road anomalies. We conduct extensive experiments in these more realistic settings for out-of-distribution detection and find that a surprisingly simple detector based on the maximum logit outperforms prior methods in all the large-scale multi-class, multi-label, and segmentation tasks, establishing a simple new baseline for future work.

Wed 20 July 14:50 - 14:55 PDT

Score-based Generative Modeling of Graphs via the System of Stochastic Differential Equations

Jaehyeong Jo · Seul Lee · Sung Ju Hwang

Generating graph-structured data requires learning the underlying distribution of graphs. Yet, this is a challenging problem, and the previous graph generative methods either fail to capture the permutation-invariance property of graphs or cannot sufficiently model the complex dependency between nodes and edges, which is crucial for generating real-world graphs such as molecules. To overcome such limitations, we propose a novel score-based generative model for graphs with a continuous-time framework. Specifically, we propose a new graph diffusion process that models the joint distribution of the nodes and edges through a system of stochastic differential equations (SDEs). Then, we derive novel score matching objectives tailored for the proposed diffusion process to estimate the gradient of the joint log-density with respect to each component, and introduce a new solver for the system of SDEs to efficiently sample from the reverse diffusion process. We validate our graph generation method on diverse datasets, on which it either achieves significantly superior or competitive performance to the baselines. Further analysis shows that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule, demonstrating the effectiveness of the system of SDEs in modeling the node-edge relationships.

Wed 20 July 14:55 - 15:00 PDT

SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators

Karolis Martinkus · Andreas Loukas · Nathanaël Perraudin · Roger Wattenhofer

We approach the graph generation problem from a spectral perspective by first generating the dominant parts of the graph Laplacian spectrum and then building a graph matching these eigenvalues and eigenvectors. Spectral conditioning allows for direct modeling of the global and local graph structure and helps to overcome the expressivity and mode collapse issues of one-shot graph generators.Our novel GAN, called SPECTRE, enables the one-shot generation of much larger graphs than previously possible with one-shot models. SPECTRE outperforms state-of-the-art deep autoregressive generators in terms of modeling fidelity, while also avoiding expensive sequential generation and dependence on node ordering. A case in point, in sizable synthetic and real-world graphs SPECTRE achieves a 4-to-170 fold improvement over the best competitor that does not overfit and is 23-to-30 times faster than autoregressive generators.