Session
DL: Robustness
Room 310
Moderator: Ludwig Schmidt
DAdaQuant: Doubly-adaptive quantization for communication-efficient Federated Learning
Robert Hönig · Yiren Zhao · Robert Mullins
Federated Learning (FL) is a powerful technique to train a model on a server with data from several clients in a privacy-preserving manner. FL incurs significant communication costs because it repeatedly transmits the model between the server and clients. Recently proposed algorithms quantize the model parameters to efficiently compress FL communication. We find that dynamic adaptations of the quantization level can boost compression without sacrificing model quality. We introduce DAdaQuant as a doubly-adaptive quantization algorithm that dynamically changes the quantization level across time and different clients. Our experiments show that DAdaQuant consistently improves client$\rightarrow$server compression, outperforming the strongest non-adaptive baselines by up to $2.8\times$.
Unsupervised Time-Series Representation Learning with Iterative Bilinear Temporal-Spectral Fusion
Ling Yang · Shenda Hong
Unsupervised/self-supervised time series representation learning is a challenging problem because of its complex dynamics and sparse annotations. Existing works mainly adopt the framework of contrastive learning with the time-based augmentation techniques to sample positives and negatives for contrastive training. Nevertheless, they mostly use segment-level augmentation derived from time slicing, which may bring about sampling bias and incorrect optimization with false negatives due to the loss of global context. Besides, they all pay no attention to incorporate the spectral information in feature representation. In this paper, we propose a unified framework, namely Bilinear Temporal-Spectral Fusion (BTSF). Specifically, we firstly utilize the instance-level augmentation with a simple dropout on the entire time series for maximally capturing long-term dependencies. We devise a novel iterative bilinear temporal-spectral fusion to explicitly encode the affinities of abundant time-frequency pairs, and iteratively refines representations in a fusion-and-squeeze manner with Spectrum-to-Time (S2T) and Time-to-Spectrum (T2S) Aggregation modules. We firstly conducts downstream evaluations on three major tasks for time series including classification, forecasting and anomaly detection. Experimental results shows that our BTSF consistently significantly outperforms the state-of-the-art methods.
RetrievalGuard: Provably Robust 1-Nearest Neighbor Image Retrieval
Yihan Wu · Hongyang Zhang · Heng Huang
Recent research works have shown that image retrieval models are vulnerable to adversarial attacks, where slightly modified test inputs could lead to problematic retrieval results. In this paper, we aim to design a provably robust image retrieval model which keeps the most important evaluation metric Recall@1 invariant to adversarial perturbation. We propose the first 1-nearest neighbor (NN) image retrieval algorithm, RetrievalGuard, which is provably robust against adversarial perturbations within an $\ell_2$ ball of calculable radius. The challenge is to design a provably robust algorithm that takes into consideration the 1-NN search and the high-dimensional nature of the embedding space. Algorithmically, given a base retrieval model and a query sample, we build a smoothed retrieval model by carefully analyzing the 1-NN search procedure in the high-dimensional embedding space. We show that the smoothed retrieval model has bounded Lipschitz constant and thus the retrieval score is invariant to $\ell_2$ adversarial perturbations. Experiments on on image retrieval tasks validate the robustness of our RetrievalGuard method.
Modeling Structure with Undirected Neural Networks
Tsvetomila Mihaylova · Vlad Niculae · Andre Filipe Torres Martins
Neural networks are powerful function estimators, leading to their status as a paradigm of choice for modeling structured data. However, unlike other structured representations that emphasize the modularity of the problem – e.g., factor graphs – neural networks are usually monolithic mappings from inputs to outputs, with a fixed computation order. This limitation prevents them from capturing different directions of computation and interaction between the modeled variables. In this paper, we combine the representational strengths of factor graphs and of neural networks, proposing undirected neural networks (UNNs): a flexible framework for specifying computations that can be performed in any order. For particular choices, our proposed models subsume and extend many existing architectures: feed-forward, recurrent, self-attention networks, auto-encoders, and networks with implicit layers. We demonstrate the effectiveness of undirected neural architectures, both unstructured and structured, on a range of tasks: tree-constrained dependency parsing, convolutional image classification, and sequence completion with attention. By varying the computation order, we show how a single UNN can be used both as a classifier and a prototype generator, and how it can fill in missing parts of an input sequence, making them a promising field for further research.
Certified Neural Network Watermarks with Randomized Smoothing
Arpit Bansal · Ping-yeh Chiang · Michael Curry · Rajiv Jain · Curtis Wigington · Varun Manjunatha · John P Dickerson · Tom Goldstein
Watermarking is a commonly used strategy to protect creators' rights to digital images, videos and audio. Recently, watermarking methods have been extended to deep learning models -- in principle, the watermark should be preserved when an adversary tries to copy the model. However, in practice, watermarks can often be removed by an intelligent adversary. Several papers have proposed watermarking methods that claim to be empirically resistant to different types of removal attacks, but these new techniques often fail in the face of new or better-tuned adversaries. In this paper, we propose the first \emph{certifiable} watermarking method. Using the randomized smoothing technique, we show that our watermark is guaranteed to be unremovable unless the model parameters are changed by more than a certain $\ell_2$ threshold. In addition to being certifiable, our watermark is also empirically more robust compared to previous watermarking methods.
Improved Certified Defenses against Data Poisoning with (Deterministic) Finite Aggregation
Wenxiao Wang · Alexander Levine · Soheil Feizi
Data poisoning attacks aim at manipulating model behaviors through distorting training data. Previously, an aggregation-based certified defense, Deep Partition Aggregation (DPA), was proposed to mitigate this threat. DPA predicts through an aggregation of base classifiers trained on disjoint subsets of data, thus restricting its sensitivity to dataset distortions. In this work, we propose an improved certified defense against general poisoning attacks, namely Finite Aggregation. In contrast to DPA, which directly splits the training set into disjoint subsets, our method first splits the training set into smaller disjoint subsets and then combines duplicates of them to build larger (but not disjoint) subsets for training base classifiers. This reduces the worst-case impacts of poison samples and thus improves certified robustness bounds. In addition, we offer an alternative view of our method, bridging the designs of deterministic and stochastic aggregation-based certified defenses. Empirically, our proposed Finite Aggregation consistently improves certificates on MNIST, CIFAR-10, and GTSRB, boosting certified fractions by up to 3.05%, 3.87% and 4.77%, respectively, while keeping the same clean accuracies as DPA's, effectively establishing a new state of the art in (pointwise) certified robustness against data poisoning.
Adversarial Vulnerability of Randomized Ensembles
Hassan Dbouk · Naresh Shanbhag
Despite the tremendous success of deep neural networks across various tasks, their vulnerability to imperceptible adversarial perturbations has hindered their deployment in the real world. Recently, works on randomized ensembles have empirically demonstrated significant improvements in adversarial robustness over standard adversarially trained (AT) models with minimal computational overhead, making them a promising solution for safety-critical resource-constrained applications. However, this impressive performance raises the question: Are these robustness gains provided by randomized ensembles real? In this work we address this question both theoretically and empirically. We first establish theoretically that commonly employed robustness evaluation methods such as adaptive PGD provide a false sense of security in this setting. Subsequently, we propose a theoretically-sound and efficient adversarial attack algorithm (ARC) capable of compromising random ensembles even in cases where adaptive PGD fails to do so. We conduct comprehensive experiments across a variety of network architectures, training schemes, datasets, and norms to support our claims, and empirically establish that randomized ensembles are in fact more vulnerable to $\ell_p$-bounded adversarial perturbations than even standard AT models. Our code can be found at https://github.com/hsndbk4/ARC.
Robustness Verification for Contrastive Learning
Zekai Wang · Weiwei Liu
Contrastive adversarial training has successfully improved the robustness of contrastive learning (CL). However, the robustness metric used in these methods is linked to attack algorithms, image labels and downstream tasks, all of which may affect the consistency and reliability of robustness metric for CL. To address these problems, this paper proposes a novel Robustness Verification framework for Contrastive Learning (RVCL). Furthermore, we use extreme value theory to reveal the relationship between the robust radius of the CL encoder and that of the supervised downstream task. Extensive experimental results on various benchmark models and datasets verify our theoretical findings, and further demonstrate that our proposed RVCL is able to evaluate the robustness of both models and images. Our code is available at https://github.com/wzekai99/RVCL.
The CLRS Algorithmic Reasoning Benchmark
Petar Veličković · Adrià Puigdomenech Badia · David Budden · Razvan Pascanu · Andrea Banino · Misha Dashevskiy · Raia Hadsell · Charles Blundell
Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms. Several important works have investigated whether neural networks can effectively reason like algorithms, typically by learning to execute them. The common trend in the area, however, is to generate targeted kinds of algorithmic data to evaluate specific hypotheses, making results hard to transfer across publications, and increasing the barrier of entry. To consolidate progress and work towards unified evaluation, we propose the CLRS Algorithmic Reasoning Benchmark, covering classical algorithms from the Introduction to Algorithms textbook. Our benchmark spans a variety of algorithmic reasoning procedures, including sorting, searching, dynamic programming, graph algorithms, string algorithms and geometric algorithms. We perform extensive experiments to demonstrate how several popular algorithmic reasoning baselines perform on these tasks, and consequently, highlight links to several open challenges. Our library is readily available at https://github.com/deepmind/clrs.
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
Xiang Li · Renyu Zhu · Yao Cheng · Caihua Shan · Siqiang Luo · Dongsheng Li · Weining Qian
We investigate graph neural networks on graphs with heterophily. Some existing methods amplify a node’s neighborhood with multi-hop neighbors to include more nodes with homophily. However, it is a significant challenge to set personalized neighborhood sizes for different nodes. Further, for other homophilous nodes excluded in the neighborhood, they are ignored for information aggregation. To address these problems, we propose two models GloGNN and GloGNN++, which generate a node’s embedding by aggregating information from global nodes in the graph. In each layer, both models learn a coefficient matrix to capture the correlations between nodes, based on which neighborhood aggregation is performed. The coefficient matrix allows signed values and is derived from an optimization problem that has a closed-form solution. We further accelerate neighborhood aggregation and derive a linear time complexity. We theoretically explain the models’ effectiveness by proving that both the coefficient matrix and the generated node embedding matrix have the desired grouping effect. We conduct extensive experiments to compare our models against 11 other competitors on 15 benchmark datasets in a wide range of domains, scales and graph heterophilies. Experimental results show that our methods achieve superior performance and are also very efficient.
Understanding Robust Generalization in Learning Regular Languages
Soham Dan · Osbert Bastani · Dan Roth
A key feature of human intelligence is the ability to generalize beyond the training distribution, for instance, parsing longer sentences than seen in the past. Currently, deep neural networks struggle to generalize robustly to such shifts in the data distribution. We study robust generalization in the context of using recurrent neural networks (RNNs) to learn regular languages. We hypothesize that standard end-to-end modeling strategies cannot generalize well to systematic distribution shifts and propose a compositional strategy to address this. We compare an end-to-end strategy that maps strings to labels with a compositional strategy that predicts the structure of the deterministic finite state automaton (DFA) that accepts the regular language. We theoretically prove that the compositional strategy generalizes significantly better than the end-to-end strategy. In our experiments, we implement the compositional strategy via an auxiliary task where the goal is to predict the intermediate states visited by the DFA when parsing a string. Our empirical results support our hypothesis, showing that auxiliary tasks can enable robust generalization. Interestingly, the end-to-end RNN generalizes significantly better than the theoretical lower bound, suggesting that it is able to achieve atleast some degree of robust generalization.
Improving Robustness against Real-World and Worst-Case Distribution Shifts through Decision Region Quantification
Leo Schwinn · Leon Bungert · An Nguyen · René Raab · Falk Pulsmeyer · Doina Precup · Bjoern Eskofier · Dario Zanca
The reliability of neural networks is essential for their use in safety-critical applications. Existing approaches generally aim at improving the robustness of neural networks to either real-world distribution shifts (e.g., common corruptions and perturbations, spatial transformations, and natural adversarial examples) or worst-case distribution shifts (e.g., optimized adversarial examples). In this work, we propose the Decision Region Quantification (DRQ) algorithm to improve the robustness of any differentiable pre-trained model against both real-world and worst-case distribution shifts in the data. DRQ analyzes the robustness of local decision regions in the vicinity of a given data point to make more reliable predictions. We theoretically motivate the DRQ algorithm by showing that it effectively smooths spurious local extrema in the decision surface. Furthermore, we propose an implementation using targeted and untargeted adversarial attacks. An extensive empirical evaluation shows that DRQ increases the robustness of adversarially and non-adversarially trained models against real-world and worst-case distribution shifts on several computer vision benchmark datasets.
AdAUC: End-to-end Adversarial AUC Optimization Against Long-tail Problems
Wenzheng Hou · Qianqian Xu · zhiyong yang · Shilong Bao · Yuan He · Qingming Huang
It is well-known that deep learning models are vulnerable to adversarial examples. Existing studies of adversarial training have made great progress against this challenge. As a typical trait, they often assume that the class distribution is overall balanced. However, long-tail datasets are ubiquitous in a wide spectrum of applications, where the amount of head class instances is significantly larger than the tail classes. Under such a scenario, AUC is a much more reasonable metric than accuracy since it is insensitive toward class distribution. Motivated by this, we present an early trial to explore adversarial training methods to optimize AUC. The main challenge lies in that the positive and negative examples are tightly coupled in the objective function. As a direct result, one cannot generate adversarial examples without a full scan of the dataset. To address this issue, based on a concavity regularization scheme, we reformulate the AUC optimization problem as a saddle point problem, where the objective becomes an instance-wise function. This leads to an end-to-end training protocol. Furthermore, we provide a convergence guarantee of the proposed training algorithm. Our analysis differs from the existing studies since the algorithm is asked to generate adversarial examples by calculating the gradient of a min-max problem. Finally, the extensive experimental results show the performance and robustness of our algorithm in three long-tail datasets.
A Modern Self-Referential Weight Matrix That Learns to Modify Itself
Kazuki Irie · Imanol Schlag · Robert Cordas · Jürgen Schmidhuber
The weight matrix (WM) of a neural network (NN) is its program. The programs of many traditional NNs are learned through gradient descent in some error function, then remain fixed. The WM of a self-referential NN, however, can keep rapidly modifying all of itself during runtime. In principle, such NNs can meta-learn to learn, and meta-meta-learn to meta-learn to learn, and so on, in the sense of recursive self-improvement. While NN architectures potentially capable of implementing such behaviour have been proposed since the '90s, there have been few if any practical studies. Here we revisit such NNs, building upon recent successes of fast weight programmers and closely related linear Transformers. We propose a scalable self-referential WM (SRWM) that learns to use outer products and the delta update rule to modify itself. We evaluate our SRWM in supervised few-shot learning and in multi-task reinforcement learning with procedurally generated game environments. Our experiments demonstrate both practical applicability and competitive performance of the proposed SRWM. Our code is public.
Short-Term Plasticity Neurons Learning to Learn and Forget
Hector Garcia Rodriguez · Qinghai Guo · Timoleon Moraitis
Short-term plasticity (STP) is a mechanism that stores decaying memories in synapses of the cerebral cortex. In computing practice, STP has been used, but mostly in the niche of spiking neurons, even though theory predicts that it is the optimal solution to certain dynamic tasks. Here we present a new type of recurrent neural unit, the STP Neuron (STPN), which indeed turns out strikingly powerful. Its key mechanism is that synapses have a state, propagated through time by a self-recurrent connection-within-the-synapse. This formulation enables training the plasticity with backpropagation through time, resulting in a form of learning to learn and forget in the short term. The STPN outperforms all tested alternatives, i.e. RNNs, LSTMs, other models with fast weights, and differentiable plasticity. We confirm this in both supervised and reinforcement learning (RL), and in tasks such as Associative Retrieval, Maze Exploration, Atari video games, and MuJoCo robotics. Moreover, we calculate that, in neuromorphic or biological circuits, the STPN minimizes energy consumption across models, as it depresses individual synapses dynamically. Based on these, biological STP may have been a strong evolutionary attractor that maximizes both efficiency and computational power. The STPN now brings these neuromorphic advantages also to a broad spectrum of machine learning practice. Code is available in https://github.com/NeuromorphicComputing/stpn.