Session
Reinforcement Learning: Deep RL
Room 307
Moderator: Tom Schaul
Modeling Strong and Human-Like Gameplay with KL-Regularized Search
Athul Paul Jacob · David Wu · Gabriele Farina · Adam Lerer · Hengyuan Hu · Anton Bakhtin · Jacob Andreas · Noam Brown
We consider the task of accurately modeling strong human policies in multi-agent decision-making problems, given examples of human behavior. Imitation learning is effective at predicting human actions but may not match the strength of expert humans (e.g., by sometimes committing blunders), while self-play learning and search techniques such as AlphaZero lead to strong performance but may produce policies that differ markedly from human behavior. In chess and Go, we show that regularized search algorithms that penalize KL divergence from an imitation-learned policy yield higher prediction accuracy of strong humans and better performance than imitation learning alone. We then introduce a novel regret minimization algorithm that is regularized based on the KL divergence from an imitation-learned policy, and show that using this algorithm for search in no-press Diplomacy yields a policy that matches the human prediction accuracy of imitation learning while being substantially stronger.
Showing Your Offline Reinforcement Learning Work: Online Evaluation Budget Matters
Vladislav Kurenkov · Sergey Kolesnikov
In this work, we argue for the importance of an online evaluation budget for a reliable comparison of deep offline RL algorithms. First, we delineate that the online evaluation budget is problem-dependent, where some problems allow for less but others for more. And second, we demonstrate that the preference between algorithms is budget-dependent across a diverse range of decision-making domains such as Robotics, Finance, and Energy Management. Following the points above, we suggest reporting the performance of deep offline RL algorithms under varying online evaluation budgets. To facilitate this, we propose to use a reporting tool from the NLP field, Expected Validation Performance. This technique makes it possible to reliably estimate expected maximum performance under different budgets while not requiring any additional computation beyond hyperparameter search. By employing this tool, we also show that Behavioral Cloning is often more favorable to offline RL algorithms when working within a limited budget.
Phasic Self-Imitative Reduction for Sparse-Reward Goal-Conditioned Reinforcement Learning
Yunfei Li · Tian Gao · Jiaqi Yang · Huazhe Xu · Yi Wu
It has been a recent trend to leverage the power of supervised learning (SL) towards more effective reinforcement learning (RL) methods. We propose a novel phasic solution by alternating online RL and offline SL for tackling sparse-reward goal-conditioned problems. In the online phase, we perform RL training and collect rollout data while in the offline phase, we perform SL on those successful trajectories from the dataset. To further improve sample efficiency, we adopt additional techniques in the online phase including task reduction to generate more feasible trajectories and a value-difference-based intrinsic reward to alleviate the sparse-reward issue. We call this overall framework, PhAsic self-Imitative Reduction (PAIR). PAIR is compatible with various online and offline RL methods and substantially outperforms both non-phasic RL and phasic SL baselines on sparse-reward robotic control problems, including a particularly challenging stacking task. PAIR is the first RL method that learns to stack 6 cubes with only 0/1 success rewards from scratch.
Model-based Meta Reinforcement Learning using Graph Structured Surrogate Models and Amortized Policy Search
Qi Wang · Herke van Hoof
Reinforcement learning is a promising paradigm for solving sequential decision-making problems, but low data efficiency and weak generalization across tasks are bottlenecks in real-world applications. Model-based meta reinforcement learning addresses these issues by learning dynamics and leveraging knowledge from prior experience. In this paper, we take a closer look at this framework and propose a new posterior sampling based approach that consists of a new model to identify task dynamics together with an amortized policy optimization step. We show that our model, called a graph structured surrogate model (GSSM), achieves competitive dynamics prediction performance with lower model complexity. Moreover, our approach in policy search is able to obtain high returns and allows fast execution by avoiding test-time policy gradient updates.
Generalized Data Distribution Iteration
Jiajun Fan · Changnan Xiao
To obtain higher sample efficiency and superior final performance simultaneously has been one of the major challenges for deep reinforcement learning (DRL). Previous work could handle one of these challenges but typically failed to address them concurrently. In this paper, we try to tackle these two challenges simultaneously. To achieve this, we firstly decouple these challenges into two classic RL problems: data richness and exploration-exploitation trade-off. Then, we cast these two problems into the training data distribution optimization problem, namely to obtain desired training data within limited interactions, and address them concurrently via i) explicit modeling and control of the capacity and diversity of behavior policy and ii) more fine-grained and adaptive control of selective/sampling distribution of the behavior policy using a monotonic data distribution optimization. Finally, we integrate this process into Generalized Policy Iteration (GPI) and obtain a more general framework called Generalized Data Distribution Iteration (GDI). We use the GDI framework to introduce operator-based versions of well-known RL methods from DQN to Agent57. Theoretical guarantee of the superiority of GDI compared with GPI is concluded. We also demonstrate our state-of-the-art (SOTA) performance on Arcade Learning Environment (ALE), wherein our algorithm has achieved 9620.98% mean human normalized score (HNS), 1146.39% median HNS, and surpassed 22 human world records using only 200M training frames. Our performance is comparable to Agent57’s while we consume 500 times less data. We argue that there is still a long way to go before obtaining real superhuman agents in ALE.
Optimizing Tensor Network Contraction Using Reinforcement Learning
Eli Meirom · Haggai Maron · Shie Mannor · Gal Chechik
Quantum Computing (QC) stands to revolutionize computing, but is currently still limited. To develop and test quantum algorithms today, quantum circuits are often simulated on classical computers. Simulating a complex quantum circuit requires computing the contraction of a large network of tensors. The order (path) of contraction can have a drastic effect on the computing cost, but finding an efficient order is a challenging combinatorial optimization problem.We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem. The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment. We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges and obtain significant improvements over state-of-the-art techniques in three varieties of circuits, including the largest scale networks used in contemporary QC.
History Compression via Language Models in Reinforcement Learning
Fabian Paischer · Thomas Adler · Vihang Patil · Angela Bitto-Nemling · Markus Holzleitner · Sebastian Lehner · Hamid Eghbal-zadeh · Sepp Hochreiter
In a partially observable Markov decision process (POMDP), an agent typically uses a representation of the past to approximate the underlying MDP. We propose to utilize a frozen Pretrained Language Transformer (PLT) for history representation and compression to improve sample efficiency. To avoid training of the Transformer, we introduce FrozenHopfield, which automatically associates observations with pretrained token embeddings. To form these associations, a modern Hopfield network stores these token embeddings, which are retrieved by queries that are obtained by a random but fixed projection of observations. Our new method, HELM, enables actor-critic network architectures that contain a pretrained language Transformer for history representation as a memory module. Since a representation of the past need not be learned, HELM is much more sample efficient than competitors. On Minigrid and Procgen environments HELM achieves new state-of-the-art results. Our code is available at https://github.com/ml-jku/helm.
REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy Transfer
Xingyu Liu · Deepak Pathak · Kris Kitani
A popular paradigm in robotic learning is to train a policy from scratch for every new robot. This is not only inefficient but also often impractical for complex robots. In this work, we consider the problem of transferring a policy across two different robots with significantly different parameters such as kinematics and morphology. Existing approaches that train a new policy by matching the action or state transition distribution, including imitation learning methods, fail due to optimal action and/or state distribution being mismatched in different robots. In this paper, we propose a novel method named REvolveR of using continuous evolutionary models for robotic policy transfer implemented in a physics simulator. We interpolate between the source robot and the target robot by finding a continuous evolutionary change of robot parameters. An expert policy on the source robot is transferred through training on a sequence of intermediate robots that gradually evolve into the target robot. Experiments on a physics simulator show that the proposed continuous evolutionary model can effectively transfer the policy across robots and achieve superior sample efficiency on new robots. The proposed method is especially advantageous in sparse reward settings where exploration can be significantly reduced.
LeNSE: Learning To Navigate Subgraph Embeddings for Large-Scale Combinatorial Optimisation
David Ireland · Giovanni Montana
Combinatorial Optimisation problems arise in several application domains and are often formulated in terms of graphs. Many of these problems are NP-hard, but exact solutions are not always needed. Several heuristics have been developed to provide near-optimal solutions; however, they do not typically scale well with the size of the graph. We propose a low-complexity approach for identifying a (possibly much smaller) subgraph of the original graph where the heuristics can be run in reasonable time and with a high likelihood of finding a global near-optimal solution. The core component of our approach is LeNSE, a reinforcement learning algorithm that learns how to navigate the space of possible subgraphs using an Euclidean subgraph embedding as its map. To solve CO problems, LeNSE is provided with a discriminative embedding trained using any existing heuristics using only on a small portion of the original graph. When tested on three problems (vertex cover, max-cut and influence maximisation) using real graphs with up to $10$ million edges, LeNSE identifies small subgraphs yielding solutions comparable to those found by running the heuristics on the entire graph, but at a fraction of the total run time. Code for the experiments is available in the public GitHub repo at https://github.com/davidireland3/LeNSE.
Efficient Learning for AlphaZero via Path Consistency
Dengwei Zhao · Shikui Tu · Lei Xu
In recent years, deep reinforcement learning have made great breakthroughs on board games. Still, most of the works require huge computational resources for a large scale of environmental interactions or self-play for the games. This paper aims at building powerful models under a limited amount of self-plays which can be utilized by a human throughout the lifetime. We proposes a learning algorithm built on AlphaZero, with its path searching regularised by a path consistency (PC) optimality, i.e., values on one optimal search path should be identical. Thus, the algorithm is shortly named PCZero. In implementation, historical trajectory and scouted search paths by MCTS makes a good balance between exploration and exploitation, which enhances the generalization ability effectively. PCZero obtains $94.1\%$ winning rate against the champion of Hex Computer Olympiad in 2015 on $13\times 13$ Hex, much higher than $84.3\%$ by AlphaZero. The models consume only $900K$ self-play games, about the amount humans can study in a lifetime. The improvements by PCZero have been also generalized to Othello and Gomoku. Experiments also demonstrate the efficiency of PCZero under offline learning setting.
A data-driven approach for learning to control computers
Peter Humphreys · David Raposo · Tobias Pohlen · Gregory Thornton · Rachita Chhaparia · Alistair Muldal · Josh Abramson · Petko Georgiev · Adam Santoro · Timothy Lillicrap
It would be useful for machines to use computers as humans do so that they can aid us in everyday tasks. This is a setting in which there is also the potential to leverage large-scale expert demonstrations and human judgements of interactive behaviour, which are two ingredients that have driven much recent success in AI. Here we investigate the setting of computer control using keyboard and mouse, with goals specified via natural language. Instead of focusing on hand-designed curricula and specialized action spaces, we focus on developing a scalable method centered on reinforcement learning combined with behavioural priors informed by actual human-computer interactions. We achieve state-of-the-art and human-level mean performance across all tasks within the MiniWob++ benchmark, a challenging suite of computer control problems, and find strong evidence of cross-task transfer. These results demonstrate the usefulness of a unified human-agent interface when training machines to use computers. Altogether our results suggest a formula for achieving competency beyond MiniWob++ and towards controlling computers, in general, as a human would.
Zero-Shot Reward Specification via Grounded Natural Language
Parsa Mahmoudieh · Deepak Pathak · Trevor Darrell
Reward signals in reinforcement learning are expensive to design and often require access to the true state which is not available in the real world. Common alternatives are usually demonstrations or goal images which can be labor-intensive to collect. On the other hand, text descriptions provide a general, natural, and low-effort way of communicating the desired task. However, prior works in learning text-conditioned policies still rely on rewards that are defined using either true state or labeled expert demonstrations. We use recent developments in building large-scale visuolanguage models like CLIP to devise a framework that generates the task reward signal just from goal text description and raw pixel observations which is then used to learn the task policy. We evaluate the proposed framework on control and robotic manipulation tasks. Finally, we distill the individual task policies into a single goal text conditioned policy that can generalize in a zero-shot manner to new tasks with unseen objects and unseen goal text descriptions.
How to Stay Curious while avoiding Noisy TVs using Aleatoric Uncertainty Estimation
Augustine Mavor-Parker · Kimberly Young · Caswell Barry · Lewis Griffin
When extrinsic rewards are sparse, artificial agents struggle to explore an environment. Curiosity, implemented as an intrinsic reward for prediction errors, can improve exploration but it is known to fail when faced with action-dependent noise sources (‘noisy TVs’). In an attempt to make exploring agents robust to Noisy TVs, we present a simple solution: aleatoric mapping agents (AMAs). AMAs are a novel form of curiosity that explicitly ascertain which state transitions of the environment are unpredictable, even if those dynamics are induced by the actions of the agent. This is achieved by generating separate forward predictions for the mean and aleatoric uncertainty of future states, with the aim of reducing intrinsic rewards for those transitions that are unpredictable. We demonstrate that in a range of environments AMAs are able to circumvent action-dependent stochastic traps that immobilise conventional curiosity driven agents. Furthermore, we demonstrate empirically that other common exploration approaches---previously thought to be immune to agent-induced randomness---can be trapped by stochastic dynamics.
Model-Value Inconsistency as a Signal for Epistemic Uncertainty
Angelos Filos · Eszter Vértes · Zita Marinho · Gregory Farquhar · Diana Borsa · Abe Friesen · Feryal Behbahani · Tom Schaul · Andre Barreto · Simon Osindero
Using a model of the environment and a value function, an agent can construct many estimates of a state’s value, by unrolling the model for different lengths and bootstrapping with its value function. Our key insight is that one can treat this set of value estimates as a type of ensemble, which we call an implicit value ensemble (IVE). Consequently, the discrepancy between these estimates can be used as a proxy for the agent’s epistemic uncertainty; we term this signal model-value inconsistency or self-inconsistency for short. Unlike prior work which estimates uncertainty by training an ensemble of many models and/or value functions, this approach requires only the single model and value function which are already being learned in most model-based reinforcement learning algorithms. We provide empirical evidence in both tabular and function approximation settings from pixels that self-inconsistency is useful (i) as a signal for exploration, (ii) for acting safely under distribution shifts, and (iii) for robustifying value-based planning with a learned model.
Improving Policy Optimization with Generalist-Specialist Learning
Zhiwei Jia · Xuanlin Li · Zhan Ling · Shuang Liu · Yiran Wu · Hao Su
Generalization in deep reinforcement learning over unseen environment variations usually requires policy learning over a large set of diverse training variations. We empirically observe that an agent trained on many variations (a generalist) tends to learn faster at the beginning, yet its performance plateaus at a less optimal level for a long time. In contrast, an agent trained only on a few variations (a specialist) can often achieve high returns under a limited computational budget. To have the best of both worlds, we propose a novel generalist-specialist training framework. Specifically, we first train a generalist on all environment variations; when it fails to improve, we launch a large population of specialists with weights cloned from the generalist, each trained to master a selected small subset of variations. We finally resume the training of the generalist with auxiliary rewards induced by demonstrations of all specialists. In particular, we investigate the timing to start specialist training and compare strategies to learn generalists with assistance from specialists.We show that this framework pushes the envelope of policy learning on several challenging and popular benchmarks including Procgen, Meta-World and ManiSkill.