Moderator: Grigorios Chrysos

Abstract:

Chat is not available.

Wed 20 July 7:30 - 7:35 PDT

Spotlight

Samy Jelassi · Yuanzhi Li

Stochastic gradient descent (SGD) with momentum is widely used for training modern deep learning architectures. While it is well-understood that using momentum can lead to faster convergence rate in various settings, it has also been observed that momentum yields higher generalization. Prior work argue that momentum stabilizes the SGD noise during training and this leads to higher generalization. In this paper, we adopt another perspective and first empirically show that gradient descent with momentum (GD+M) significantly improves generalization compared to gradient descent (GD) in some deep learning problems. From this observation, we formally study how momentum improves generalization. We devise a binary classification setting where a one-hidden layer (over-parameterized) convolutional neural network trained with GD+M provably generalizes better than the same network trained with GD, when both algorithms are similarly initialized. The key insight in our analysis is that momentum is beneficial in datasets where the examples share some feature but differ in their margin. Contrary to GD that memorizes the small margin data, GD+M still learns the feature in these data thanks to its historical gradients. Lastly, we empirically validate our theoretical findings.

Wed 20 July 7:35 - 7:40 PDT

Spotlight

Tiffany Vlaar · Jonathan Frankle

Studying neural network loss landscapes provides insights into the nature of the underlying optimization problems. Unfortunately, loss landscapes are notoriously difficult to visualize in a human-comprehensible fashion. One common way to address this problem is to plot linear slices of the landscape, for example from the initial state of the network to the final state after optimization. On the basis of this analysis, prior work has drawn broader conclusions about the difficulty of the optimization problem. In this paper, we put inferences of this kind to the test, systematically evaluating how linear interpolation and final performance vary when altering the data, choice of initialization, and other optimizer and architecture design choices. Further, we use linear interpolation to study the role played by individual layers and substructures of the network. We find that certain layers are more sensitive to the choice of initialization, but that the shape of the linear path is not indicative of the changes in test accuracy of the model. Our results cast doubt on the broader intuition that the presence or absence of barriers when interpolating necessarily relates to the success of optimization.

Wed 20 July 7:40 - 7:45 PDT

Spotlight

Atish Agarwala · Samuel Schoenholz

Deep equilibrium networks (DEQs) are a promising way to construct models which trade off memory for compute. However, theoretical understanding of these models is still lacking compared to traditional networks, in part because of the repeated application of a single set of weights. We show that DEQs are sensitive to the higher order statistics of the matrix families from which they are initialized. In particular, initializing with orthogonal or symmetric matrices allows for greater stability in training. This gives us a practical prescription for initializations which allow for training with a broader range of initial weight scales.

Wed 20 July 7:45 - 7:50 PDT

Spotlight

Jiahao Su · Wonmin Byeon · Furong Huang

Enforcing orthogonality in convolutional neural networks is a remedy for gradient vanishing/exploding problems and sensitivity to perturbation. Many previous approaches for orthogonal convolutions enforce orthogonality on its flattened kernel, which, however, do not lead to the orthogonality of the operation. Some recent approaches consider orthogonality for standard convolutional layers and propose specific classes of their realizations. In this work, we propose a theoretical framework that establishes the equivalence between diverse orthogonal convolutional layers in the spatial domain and the paraunitary systems in the spectral domain. Since 1D paraunitary systems admit a complete factorization, we can parameterize any separable orthogonal convolution as a composition of spatial filters. As a result, our framework endows high expressive power to various convolutional layers while maintaining their exact orthogonality. Furthermore, our layers are memory and computationally efficient for deep networks compared to previous designs. Our versatile framework, for the first time, enables the study of architectural designs for deep orthogonal networks, such as choices of skip connection, initialization, stride, and dilation. Consequently, we scale up orthogonal networks to deep architectures, including ResNet and ShuffleNet, substantially outperforming their shallower counterparts. Finally, we show how to construct residual flows, a flow-based generative model that requires strict Lipschitzness, using our orthogonal networks.Our code will be publicly available at https://github.com/umd-huang-lab/ortho-conv

Wed 20 July 7:50 - 7:55 PDT

Spotlight

Arindam Banerjee · Tiancong Chen · Xinyan Li · Yingxue Zhou

Recent years have seen advances in generalization bounds for noisy stochastic algorithms, especially stochastic gradient Langevin dynamics (SGLD) based on stability (Mou et al., 2018; Li et al., 2020) and information theoretic approaches (Xu & Raginsky, 2017; Negrea et al., 2019; Steinke & Zakynthinou, 2020). In this paper, we unify and substantially generalize stability based generalization bounds and make three technical contributions. First, we bound the generalization error in terms of expected (not uniform) stability which arguably leads to quantitatively sharper bounds. Second, as our main contribution, we introduce Exponential Family Langevin Dynamics (EFLD), a substantial generalization of SGLD, which includes noisy versions of Sign-SGD and quantized SGD as special cases. We establish data dependent expected stability based generalization bounds for any EFLD algorithm with a O(1/n) sample dependence and dependence on gradient discrepancy rather than the norm of gradients, yielding significantly sharper bounds. Third, we establish optimization guarantees for special cases of EFLD. Further, empirical results on benchmarks illustrate that our bounds are non-vacuous, quantitatively sharper than existing bounds, and behave correctly under noisy labels.

Wed 20 July 7:55 - 8:00 PDT

Spotlight

Songtao Liu · Rex (Zhitao) Ying · Hanze Dong · Lanqing Li · Tingyang Xu · Yu Rong · Peilin Zhao · Junzhou Huang · Dinghao Wu

Graph Neural Networks (GNNs) have achieved remarkable performance on graph-based tasks. The key idea for GNNs is to obtain informative representation through aggregating information from local neighborhoods. However, it remains an open question whether the neighborhood information is adequately aggregated for learning representations of nodes with few neighbors. To address this, we propose a simple and efficient data augmentation strategy, local augmentation, to learn the distribution of the node representations of the neighbors conditioned on the central node's representation and enhance GNN's expressive power with generated features. Local augmentation is a general framework that can be applied to any GNN model in a plug-and-play manner. It samples feature vectors associated with each node from the learned conditional distribution as additional input for the backbone model at each training iteration. Extensive experiments and analyses show that local augmentation consistently yields performance improvement when applied to various GNN architectures across a diverse set of benchmarks. For example, experiments show that plugging in local augmentation to GCN and GAT improves by an average of 3.4\% and 1.6\% in terms of test accuracy on Cora, Citeseer, and Pubmed. Besides, our experimental results on large graphs (OGB) show that our model consistently improves performance over backbones. Code is available at https://github.com/SongtaoLiu0823/LAGNN.

Wed 20 July 8:00 - 8:05 PDT

Spotlight

Kun Chen · Dachao Lin · Zhihua Zhang

In this paper, we study the non-local convergence properties of deep linear networks. Specifically, under the quadratic loss, we consider optimizing deep linear networks in which there is at least a layer with only one neuron. We describe the convergent point of trajectories with an arbitrary balanced starting point under gradient flow, including the paths which converge to one of the saddle points. We also show specific convergence rates of trajectories that converge to the global minimizers by stages. We conclude that the rates vary from polynomial to linear. As far as we know, our results are the first to give a non-local analysis of deep linear neural networks with arbitrary balanced initialization, rather than the lazy training regime which has dominated the literature on neural networks or the restricted benign initialization.

Wed 20 July 8:05 - 8:25 PDT

Oral

Zeke Xie · Xinrui Wang · Huishuai Zhang · Issei Sato · Masashi Sugiyama

Adaptive Moment Estimation (Adam), which combines Adaptive Learning Rate and Momentum, would be the most popular stochastic optimizer for accelerating the training of deep neural networks. However, it is empirically known that Adam often generalizes worse than Stochastic Gradient Descent (SGD). The purpose of this paper is to unveil the mystery of this behavior in the diffusion theoretical framework. Specifically, we disentangle the effects of Adaptive Learning Rate and Momentum of the Adam dynamics on saddle-point escaping and flat minima selection. We prove that Adaptive Learning Rate can escape saddle points efficiently, but cannot select flat minima as SGD does. In contrast, Momentum provides a drift effect to help the training process pass through saddle points, and almost does not affect flat minima selection. This partly explains why SGD (with Momentum) generalizes better, while Adam generalizes worse but converges faster. Furthermore, motivated by the analysis, we design a novel adaptive optimization framework named Adaptive Inertia, which uses parameter-wise adaptive inertia to accelerate the training and provably favors flat minima as well as SGD. Our extensive experiments demonstrate that the proposed adaptive inertia method can generalize significantly better than SGD and conventional adaptive gradient methods.

Wed 20 July 8:25 - 8:30 PDT

Spotlight

Keiichiro Yamamura · Haruki Sato · Nariaki Tateiwa · Nozomi Hata · Toru Mitsutake · Issa Oe · Hiroki Ishikura · Katsuki Fujisawa

Deep learning models are vulnerable to adversarial examples, and adversarial attacks used to generate such examples have attracted considerable research interest.Although existing methods based on the steepest descent have achieved high attack success rates, ill-conditioned problems occasionally reduce their performance.To address this limitation, we utilize the conjugate gradient (CG) method, which is effective for this type of problem, and propose a novel attack algorithm inspired by the CG method, named the Auto Conjugate Gradient (ACG) attack.The results of large-scale evaluation experiments conducted on the latest robust models show that, for most models, ACG was able to find more adversarial examples with fewer iterations than the existing SOTA algorithm Auto-PGD (APGD).We investigated the difference in search performance between ACG and APGD in terms of diversification and intensification, and define a measure called Diversity Index (DI) to quantify the degree of diversity.From the analysis of the diversity using this index, we show that the more diverse search of the proposed method remarkably improves its attack success rate.

Wed 20 July 8:30 - 8:35 PDT

Spotlight

Jinxin Zhou · Xiao Li · Tianyu Ding · Chong You · Qing Qu · Zhihui Zhu

When training deep neural networks for classification tasks, an intriguing empirical phenomenon has been widely observed in the last-layer classifiers and features, where (i) the class means and the last-layer classifiers all collapse to the vertices of a Simplex Equiangular Tight Frame (ETF) up to scaling, and (ii) cross-example within-class variability of last-layer activations collapses to zero. This phenomenon is called Neural Collapse (NC), which seems to take place regardless of the choice of loss functions. In this work, we justify NC under the mean squared error (MSE) loss, where recent empirical evidence shows that it performs comparably or even better than the de-facto cross-entropy loss. Under a simplified unconstrained feature model, we provide the first global landscape analysis for vanilla nonconvex MSE loss and show that the (only!) global minimizers are neural collapse solutions, while all other critical points are strict saddles whose Hessian exhibit negative curvature directions. Furthermore, we justify the usage of rescaled MSE loss by probing the optimization landscape around the NC solutions, showing that the landscape can be improved by tuning the rescaling hyperparameters. Finally, our theoretical findings are experimentally verified on practical network architectures.

Wed 20 July 8:35 - 8:40 PDT

Spotlight

Jianfei Gao · Bruno Ribeiro

This work formalizes the associational task of predicting node attribute evolution in temporal graphs from the perspective of learning equivariant representations. We show that node representations in temporal graphs can be cast into two distinct frameworks: (a) The most popular approach, which we denote as time-and-graph, where equivariant graph (e.g., GNN) and sequence (e.g., RNN) representations are intertwined to represent the temporal evolution of node attributes in the graph; and (b) an approach that we denote as time-then-graph, where the sequences describing the node and edge dynamics are represented first, then fed as node and edge attributes into a static equivariant graph representation that comes after. Interestingly, we show that time-then-graph representations have an expressivity advantage over time-and-graph representations when both use component GNNs that are not most-expressive (e.g., 1-Weisfeiler-Lehman GNNs). Moreover, while our goal is not necessarily to obtain state-of-the-art results, our experiments show that time-then-graph methods are capable of achieving better performance and efficiency than state-of-the-art time-and-graph methods in some real-world tasks, thereby showcasing that the time-then-graph framework is a worthy addition to the graph ML toolbox.

Wed 20 July 8:40 - 8:45 PDT

Spotlight

Sheng Liu · Zhihui Zhu · Qing Qu · Chong You

Recently, over-parameterized deep networks, with increasingly more network parameters than training samples, have dominated the performances of modern machine learning. However, when the training data is corrupted, it has been well-known that over-parameterized networks tend to overfit and do not generalize. In this work, we propose a principled approach for robust training of over-parameterized deep networks in classification tasks where a proportion of training labels are corrupted. The main idea is yet very simple: label noise is sparse and incoherent with the network learned from clean data, so we model the noise and learn to separate it from the data. Specifically, we model the label noise via another sparse over-parameterization term, and exploit implicit algorithmic regularizations to recover and separate the underlying corruptions. Remarkably, when trained using such a simple method in practice, we demonstrate state-of-the-art test accuracy against label noise on a variety of real datasets. Furthermore, our experimental results are corroborated by theory on simplified linear models, showing that exact separation between sparse noise and low-rank data can be achieved under incoherent conditions. The work opens many interesting directions for improving over-parameterized models by using sparse over-parameterization and implicit regularization. Code is available at https://github.com/shengliu66/SOP.

Wed 20 July 8:45 - 8:50 PDT

Spotlight

Mor Shpigel Nacson · Kavya Ravichandran · Nati Srebro · Daniel Soudry

Focusing on diagonal linear networks as a model for understanding the implicit bias in underdetermined models, we show how the gradient descent step size can have a large qualitative effect on the implicit bias, and thus on generalization ability. In particular, we show how using large step size for non-centered data can change the implicit bias from a "kernel" type behavior to a "rich" (sparsity-inducing) regime --- even when gradient flow, studied in previous works, would not escape the "kernel" regime. We do so by using dynamic stability, proving that convergence to dynamically stable global minima entails a bound on some weighted $\ell_1$-norm of the linear predictor, i.e. a "rich" regime. We prove this leads to good generalization in a sparse regression setting.

Wed 20 July 8:50 - 8:55 PDT

Spotlight

Tom Tirer · Joan Bruna

The modern strategy for training deep neural networks for classification tasks includes optimizing the network's weights even after the training error vanishes to further push the training loss toward zero. Recently, a phenomenon termed "neural collapse" (NC) has been empirically observed in this training procedure. Specifically, it has been shown that the learned features (the output of the penultimate layer) of within-class samples converge to their mean, and the means of different classes exhibit a certain tight frame structure, which is also aligned with the last layer's weights. Recent papers have shown that minimizers with this structure emerge when optimizing a simplified "unconstrained features model" (UFM) with a regularized cross-entropy loss. In this paper, we further analyze and extend the UFM. First, we study the UFM for the regularized MSE loss, and show that the minimizers' features can have a more delicate structure than in the cross-entropy case. This affects also the structure of the weights. Then, we extend the UFM by adding another layer of weights as well as ReLU nonlinearity to the model and generalize our previous results. Finally, we empirically demonstrate the usefulness of our nonlinear extended UFM in modeling the NC phenomenon that occurs with practical networks.

Wed 20 July 8:55 - 9:00 PDT

Spotlight

Giannis Daras · Yuval Dagan · Alexandros Dimakis · Constantinos Daskalakis

We prove fast mixing and characterize the stationary distribution of the Langevin Algorithm for inverting random weighted DNN generators. This result extends the work of Hand and Voroninski from efficient inversion to efficient posterior sampling. In practice, to allow for increased expressivity, we propose to do posterior sampling in the latent space of a pre-trained generative model. To achieve that, we train a score-based model in the latent space of a StyleGAN-2 and we use it to solve inverse problems.Our framework, Score-Guided Intermediate Layer Optimization (SGILO), extends prior work by replacing the sparsity regularization with a generative prior in the intermediate layer. Experimentally, we obtain significant improvements over the previous state-of-the-art, especially in the low measurement regime.