Oral Session
|
Wed 7:30
|
PM: Variational Inference/Bayesian Models and Methods
|
|
Poster
|
Wed 15:30
|
Nonparametric Sparse Tensor Factorization with Hierarchical Gamma Processes
Conor Tillinghast · Zheng Wang · Shandian Zhe
|
|
Spotlight
|
Wed 7:55
|
Nonparametric Sparse Tensor Factorization with Hierarchical Gamma Processes
Conor Tillinghast · Zheng Wang · Shandian Zhe
|
|
Poster
|
Wed 15:30
|
Variational Inference for Infinitely Deep Neural Networks
Achille Nazaret · David Blei
|
|
Spotlight
|
Wed 11:20
|
Variational Inference for Infinitely Deep Neural Networks
Achille Nazaret · David Blei
|
|
Poster
|
Wed 15:30
|
Deep Reference Priors: What is the best way to pretrain a model?
Yansong Gao · Rahul Ramesh · Pratik Chaudhari
|
|
Spotlight
|
Wed 8:45
|
Deep Reference Priors: What is the best way to pretrain a model?
Yansong Gao · Rahul Ramesh · Pratik Chaudhari
|
|
Poster
|
Tue 15:30
|
Training Discrete Deep Generative Models via Gapped Straight-Through Estimator
Ting-Han Fan · Ta-Chung Chi · Alexander Rudnicky · Peter Ramadge
|
|
Spotlight
|
Tue 13:45
|
Training Discrete Deep Generative Models via Gapped Straight-Through Estimator
Ting-Han Fan · Ta-Chung Chi · Alexander Rudnicky · Peter Ramadge
|
|
Poster
|
Tue 15:30
|
Variational nearest neighbor Gaussian process
Luhuan Wu · Geoff Pleiss · John Cunningham
|
|
Spotlight
|
Tue 10:55
|
Variational nearest neighbor Gaussian process
Luhuan Wu · Geoff Pleiss · John Cunningham
|
|
Poster
|
Wed 15:30
|
Contrastive Mixture of Posteriors for Counterfactual Inference, Data Integration and Fairness
Adam Foster · Arpi Vezer · Craig Glastonbury · Páidí Creed · Sam Abujudeh · Aaron Sim
|
|