Poster
SpaceMAP: Visualizing High-Dimensional Data by Space Expansion
Xinrui Zu · Qian Tao
Hall E #623
Keywords: [ DL: Self-Supervised Learning ] [ DL: Other Representation Learning ] [ MISC: Representation Learning ] [ APP: Genetics, Cell Biology, etc ] [ DL: Algorithms ] [ MISC: Unsupervised and Semi-supervised Learning ]
Dimensionality reduction (DR) of high-dimensional data is of theoretical and practical interest in machine learning. However, there exist intriguing, non-intuitive discrepancies between the geometry of high- and low-dimensional space. We look into such discrepancies and propose a novel visualization method called Space-based Manifold Approximation and Projection (SpaceMAP). Our method establishes an analytical transformation on distance metrics between spaces to address the crowding problem" in DR. With the proposed equivalent extended distance (EED), we are able to match the capacity of high- and low-dimensional space in a principled manner. To handle complex data with different manifold properties, we propose hierarchical manifold approximation to model the similarity function in a data-specific manner. We evaluated SpaceMAP on a range of synthetic and real datasets with varying manifold properties, and demonstrated its excellent performance in comparison with classical and state-of-the-art DR methods. In particular, the concept of space expansion provides a generic framework for understanding nonlinear DR methods including the popular t-distributed Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold Approximation and Projection