Skip to yearly menu bar Skip to main content


Poster

PAC-Net: A Model Pruning Approach to Inductive Transfer Learning

Sanghoon Myung · In Huh · Wonik Jang · Jae Myung Choe · Jisu Ryu · Daesin Kim · Kee-Eung Kim · Changwook Jeong

Hall E #508

Keywords: [ MISC: Transfer, Multitask and Meta-learning ] [ APP: Physics ] [ DL: Algorithms ]


Abstract:

Inductive transfer learning aims to learn from a small amount of training data for the target task by utilizing a pre-trained model from the source task. Most strategies that involve large-scale deep learning models adopt initialization with the pre-trained model and fine-tuning for the target task. However, when using over-parameterized models, we can often prune the model without sacrificing the accuracy of the source task. This motivates us to adopt model pruning for transfer learning with deep learning models. In this paper, we propose PAC-Net, a simple yet effective approach for transfer learning based on pruning. PAC-Net consists of three steps: Prune, Allocate, and Calibrate (PAC). The main idea behind these steps is to identify essential weights for the source task, fine-tune on the source task by updating the essential weights, and then calibrate on the target task by updating the remaining redundant weights. Under the various and extensive set of inductive transfer learning experiments, we show that our method achieves state-of-the-art performance by a large margin.

Chat is not available.