Skip to yearly menu bar Skip to main content


Wide Neural Networks Forget Less Catastrophically

Seyed Iman Mirzadeh · Arslan Chaudhry · Dong Yin · Huiyi Hu · Razvan Pascanu · Dilan Gorur · Mehrdad Farajtabar

Hall E #628

Keywords: [ MISC: Transfer, Multitask and Meta-learning ]


A primary focus area in continual learning research is alleviating the "catastrophic forgetting" problem in neural networks by designing new algorithms that are more robust to the distribution shifts. While the recent progress in continual learning literature is encouraging, our understanding of what properties of neural networks contribute to catastrophic forgetting is still limited. To address this, instead of focusing on continual learning algorithms, in this work, we focus on the model itself and study the impact of "width" of the neural network architecture on catastrophic forgetting, and show that width has a surprisingly significant effect on forgetting. To explain this effect, we study the learning dynamics of the network from various perspectives such as gradient orthogonality, sparsity, and lazy training regime. We provide potential explanations that are consistent with the empirical results across different architectures and continual learning benchmarks.

Chat is not available.