Skip to yearly menu bar Skip to main content


Branching Reinforcement Learning

Yihan Du · Wei Chen

Hall E #1111

Keywords: [ RL: Online ] [ T: Reinforcement Learning and Planning ]

Abstract: In this paper, we propose a novel Branching Reinforcement Learning (Branching RL) model, and investigate both Regret Minimization (RM) and Reward-Free Exploration (RFE) metrics for this model. Unlike standard RL where the trajectory of each episode is a single $H$-step path, branching RL allows an agent to take multiple base actions in a state such that transitions branch out to multiple successor states correspondingly, and thus it generates a tree-structured trajectory. This model finds important applications in hierarchical recommendation systems and online advertising. For branching RL, we establish new Bellman equations and key lemmas, i.e., branching value difference lemma and branching law of total variance, and also bound the total variance by only $O(H^2)$ under an exponentially-large trajectory. For RM and RFE metrics, we propose computationally efficient algorithms BranchVI and BranchRFE, respectively, and derive nearly matching upper and lower bounds. Our regret and sample complexity results are polynomial in all problem parameters despite exponentially-large trajectories.

Chat is not available.